Skip to main content
Log in

Development of low-cost passive sampler from cow bone char for sampling of volatile organic compounds

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

A simple and low-cost passive sampler for collection of volatile organic compounds, specifically benzene, toluene, ethylbenzene and xylene (BTEX), from the ambient air has been developed by using cow bone char (CBC) as an adsorbent with desorption by solvent extraction prior to analysis by gas chromatography–mass spectrometry (GC–MS). The laboratory-made CBC was prepared by calcination process in a partially oxidative atmosphere. The developed passive sampler was tested for a suitable amount of CBC used, diffusion tube type and size, and sampling duration, in a closed chamber saturated with each of the BTEX vapors. With the optimum amount of 250 mg CBC packed in a glass bottle (82.6 mm height × 11.1 mm i.d.) and the exposure time of 168 h, detection limits (µg/m3) for BTEX determination using this developed sampler together with GC–MS were 0.28 (benzene), 0.79 (toluene), 0.58 (ethylbenzene), 0.28 (p-xylene) and 0.54 (o-xylene). The proposed method was applied to sampling BTEX from selected petrol stations, traffic congestion areas and a rural area in Chiang Mai Province, Thailand. The BTEX concentrations detected were well correlated with their sources as they were the highest at the petrol station sites, lower at the traffic congestion area sites and the lowest at the rural area site. The laboratory-made passive sampler containing CBC has thus opened up a possibility of having a simple and effective device for sampling of BTEX in the ambient air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akinyi (2013) Determination of the extent to which the bucket fluoride fukters supplied by the catholic diocese of nakuru are able to remove excessive fluoride from drinking water in nakuru town, Kenya. Int J Adv Res Chem Sci 1(10):392–399

    CAS  Google Scholar 

  • ASTDR (2011) Medical Management Guidelines for Carbon Disulfide. http://www.atsdr.cdc.gov/mmg/mmg.asp?id=470&tid=84

  • ASTM (1988) Method D 3687-84: standard practice for analysis of organic compound vapors collected by the activated charcoal tube adsorption method. J ASTM Int, Pennsylvania

    Google Scholar 

  • Atkinson R (1997) Gas-phase tropospheric chemistry of volatile organic compounds 1 Alkanes and alkenes. J Phys Chem Ref Data 26:215–290

    Article  CAS  Google Scholar 

  • Atkinson R, Baulch DL, Cox RA, Hampson RFJ, Kerr JA, Rossi MJ, Troe J (1999) Evaluated kinetic and photochemical data for atmospheric chemistry, Organic species Supplement VII. J Phys Chem Ref Data 28(2):391–393

    Article  Google Scholar 

  • Attard G, Barnes C (2008) Surfaces. Oxford University Press, Oxford

    Google Scholar 

  • Brocco D, Fratarcangeli R, Lepore L, Petricca M, Ventrone I (1997) Determination of aromatic hydrocarbons in urban air of Rome. Atmos Environ 31(4):557–566

    Article  CAS  Google Scholar 

  • Buxbsum G (1998) Industrial inorganic pigment. Wiley-VCH, Federal Republic of Germany

    Book  Google Scholar 

  • Choy KKH, Mckay G (2005) Sorption of cadmium, copper, and zinc ions onto bone char using Crank diffusion model. Chemosphere 60(8):1141–1150

    Article  CAS  Google Scholar 

  • Daifullah AAM, Girgis BS (2003) Impact of surface characteristics of activated carbon on adsorption of BTEX. Colloids Surf A: Physicochem Eng Aspects 214(1–3):181–193

    Article  CAS  Google Scholar 

  • Dimović S, Smičiklas I, Plećaš I, Antonović D, Mitrić M (2009) Comparative study of differently treated animal bones for Co2+ removal. J Hazard Mater 164(1):279–287

    Article  Google Scholar 

  • Esteve-Turrillas FA, Pastor A, De La Guardia M (2007) Assessing air quality inside vehicles and at filling stations by monitoring benzene, toluene, ethylbenzene and xylenes with the use of semipermeable devices. Anal Chim Acta 593(1):108–116

    Article  CAS  Google Scholar 

  • Esteve-Turrillas FA, Ly-Verdú S, Pastor A, De La Guardia M (2009) Development of a versatile, easy and rapid atmospheric monitor for benzene, toluene, ethylbenzene and xylenes determination in air. J Chromatogr A 1216(48):8549–8556

    Article  CAS  Google Scholar 

  • Fernández-Villarrenaga V, López-Mahía P, Muniategui-Lorenzo S, Prada-RodríGuez D, Fernández-Fernández E, Tomàs X (2004) C1 to C9 volatile organic compound measurements in urban air. Sci Total Environ 334–335:167–176

  • Fujita EM, Watson JG, Chow JC, Lu Z (1994) Validation of the chemical mass balance receptor model applied to hydrocarbon source apportionment in the Southern California air quality study. Environ Sci Technol 28(9):1633–1649

    Article  CAS  Google Scholar 

  • Girgis BS, Kader AA, Aly ANH (1997) Development of porosity in bone char during decolourization of sugar syrup. Adsorpt Sci Technol 15(4):277–287

    CAS  Google Scholar 

  • Górecki T, Namieśnik J (2002) Passive sampling. TrAC Trends Anal Chem 21(4):276–291

    Article  Google Scholar 

  • Haagen-Smit AJ, Fox MM (1956) Ozone formation in photochemical oxidation of organic substance. Ind Eng Chem 48(9):1484–1487

    Article  CAS  Google Scholar 

  • Hoque RR, Khillare PS, Agarwal T, Shridhar V, Balachandran S (2008) Spatial and temporal variation of BTEX in the urban atmosphere of Delhi. India. Environ Sci Technol 392(1):30–40

    CAS  Google Scholar 

  • Hsu DJ, Huang HL (2009) Concentrations of volatile organic compounds, carbon monoxide, carbon dioxide and particulate matter in buses on highways in Taiwan. Atmos Environ 43(36):5723–5730

    Article  CAS  Google Scholar 

  • IARC (2012) IARC monograph on the evaluation of carcinogenic risks to humans. http://monographs.iarc.fr/ENG/Classification/index.php

  • Ip AWM, Barford JP, McKay G (2010a) A comparative study on the kinetics and mechanisms of removal of Reactive Black 5 by adsorption onto activated carbons and bone char. Chem Eng J 157(2–3):434–442

    Article  CAS  Google Scholar 

  • Ip AWM, Barford JP, Mckay G, Alvin WM (2010b) Biodegradation of Reactive Black 5 and bioregeneration in upflow fixed bed bioreactors packed with different adsorptions. J Chem Technol Biotechnol 85(5):658–667

    Article  CAS  Google Scholar 

  • Kaseva ME (2006) Optimization of regenerated bone char for fluoride removal in drinking water: a case study in Tanzania. J Water Health 4(1):139–147

    CAS  Google Scholar 

  • Kawasaki N, Ogata F, Tominaga H, Yamaguchi I (2009) Removal of fluoride ion by bone char produced from animal biomass. J Oleo Sci 58(10):529–535

    Article  CAS  Google Scholar 

  • Khoder MI (2007) Ambient levels of volatile organic compounds in the atmosphere of Greater Cairo. Atmos Environ 41(3):554–566

    Article  CAS  Google Scholar 

  • Kim SC (2002) The catalytic oxidation of aromatic hydrocarbons over supported metal oxide. J Hazard Mater B91:285–299

    Article  Google Scholar 

  • Kolasinski KW (2008) Surface science: foundations of catalysis and nanoscience, 2nd edn. Wiley, UK

    Google Scholar 

  • Laowagul W, Garivait H, Limpaseni W, Yoshizumi K (2008) Ambient air concentrations of benzene, toluene, ethylbenzene and xylene in Bangkok, Thailand during April–August in 2007. Asian J Atmos Environ 2–1:14–25

    Article  Google Scholar 

  • Lee SC, Chiu MY, Ho KF, Zou SC, Wang X (2002) Volatile organic compounds (VOCs) in urban atmosphere of Hong Kong. Chemosphere 48(3):375–382

    Article  CAS  Google Scholar 

  • Leyva-Ramosa R, Rivera-Utrillab J, Medellin-Castilloa NA, Sanchez-Polob M (2010) Kinetic modeling of fluoride adsorption from aqueous solution onto bone char. Chem Eng J 158(3):458–467

    Article  Google Scholar 

  • Medellin-Castillo NA, Leyva-Ramos R, Padilla-Ortega E, Perez RO, Flores-Cano JV, Berber-Mendoza MS (2014) Adsorption capacity of bone char for removing fluoride from water solution. Role of hydroxyapatite content, adsorption mechanism and competing anions. J Ind Eng Chem 20(6):4014–4021

  • Mwaniki DL (1992) Fluoride sorption characteristics of different grades of bone charcoal based on batch tests. J Dent Res 71(6):1310–1315

    Article  CAS  Google Scholar 

  • Na K (2006) Determination of VOC source signature of vehicle exhaust in a traffic tunnel. J Environ Manage 81(4):392–398

    Article  CAS  Google Scholar 

  • Na K, Kim YP, Moon I, Moon KC (2004) Chemical composition of major VOC emission sources in the Seoul atmosphere. Chemosphere 55(4):585–594

    Article  CAS  Google Scholar 

  • Odabasi M, Ongan O, Cetin E (2005) Quantitative analysis of volatile organic compounds (VOCs) in atmospheric particles. Atmos Environ 39(20):3763–3770

    Article  CAS  Google Scholar 

  • Ooi CY, Hamdi M, Ramesh S (2007) Properties of hydroxyapatite produced by annealing of bovine bone. Ceram Int 33(7):1171–1177

    Article  CAS  Google Scholar 

  • Parra MA, González L, Elustondo D, Garrigó J, Bermejo R, Santamaría JM (2006) Spatial and temporal trends of volatile organic compounds (VOC) in a rural area of northern Spain. Sci Total Environ 370(1):157–167

    Article  CAS  Google Scholar 

  • Parra MA, Elustondo D, Bermejo R, Santamaría JM (2008) Exposure to volatile organic compounds (VOC) in public buses of Pamplona, Northern Spain. Sci Total Environ 404(1):18–25

    Article  CAS  Google Scholar 

  • PCD (2009) Situation and management of air and noise pollution. (in Thai) http://www.pcd.go.th/public/Publications/print_report.cfm?task=air_noise51

  • Pekey B, Yılmaz H (2011) The use of passive sampling to monitor spatial trends of volatile organic compounds (VOCs) at an industrial city of Turkey. Microchem J 97(2):213–219

    Article  CAS  Google Scholar 

  • Pennequin-Cardinal A, Plaisance H, Locoge N, Ramalho O, Kirchner S, Galloo JC (2005) Performances of the Radiello® diffusive sampler for BTEX measurements: influence of environmental conditions and determination of modelled sampling rates. Atmos Environ 39(14):2535–2544

    Article  CAS  Google Scholar 

  • Perry R, Gee I (1995) Vehicle emissions in relation to fuel composition. Sci Total Environ 169(1–3):149–156

    Article  CAS  Google Scholar 

  • Rezaee A, Rangkooy H, Jonidi-Jafari A, Khavanin A (2013) Surface modification of bone char for removal of formaldehydefrom air. Appl Surf Sci 286:235–239

    Article  CAS  Google Scholar 

  • Rojas-Mayorga CK, Bonilla-Petriciolet A, Aguayo-Villarreal IA, Hernández-Montoya V, Moreno-Virgen MR, Tovar-Gómez R, Montes-Morán MA (2013) Optimization of pyrolysis conditions and adsorption properties of bone char for fluoride removal from water. J Anal Appl Pyrolysis 104:10–18

    Article  CAS  Google Scholar 

  • Rojas-Mayorga CK, Silvestre-Albero J, Aguayo-Villarreal IA, Mendoza-Castillo DI, Bonilla-Petriciolet A (2014) A new synthesis route for bone chars using CO2 atmosphere and their application as fluoride adsorbents. Microporous Mesoporous Mater 29:38–44

    Google Scholar 

  • Rowe RK, Mukunoki T, Sangam HP (2005) BTEX diffusion and sorption for a geosynthetic clay liner at two temperatures. J Geotech Geoenviron Eng 131(10):1211–1221

    Article  CAS  Google Scholar 

  • Seethapathy S, Górecki T (2010) Polydimethylsiloxane-based permeation passive air sampler. Part II: effect of temperature and humidity on the calibration constants. J Chromatogr A 1217(50):7907–7913

    Article  CAS  Google Scholar 

  • Seethapathy S, Górecki T (2011) Polydimethylsiloxane-based permeation passive air sampler. Part I: calibration constants and their relation to retention indices of the analytes. J Chromatogr A 1218(1):143–155

    Article  CAS  Google Scholar 

  • Seethapathy S, Górecki T, Li X (2008) Passive sampling in environmental analysis. J Chromatogr A 1184(1–2):234–253

    Article  CAS  Google Scholar 

  • Sopajaree K, Chantara S, Koonaphapdeelert S, Thiengburanathum P, Preechanukul N (2011) The development of an emission inventory for Chiang Mai City under the clean air for smaller cities in the ASEAN region project. German International Cooperation (GIZ)

  • Suwanttiga P, Limpaseni W (2005) Seasonal source apportionment of volatile organic compounds in Bangkok ambient air. ScienceAsia 31:395–401

    Article  Google Scholar 

  • Thailand Meteorological Department (2012) www.tmd.go.th

  • Thammakhet C, Muneesawang V, Thavarungkul P, Kanatharana P (2006) Cost effective passive sampling device for volatile organic compounds monitoring. Atmos Environ 40(24):4589–4596

    Article  CAS  Google Scholar 

  • Thijesse TR, Van Oss RF, Lenschow P (1999) Determination of source contributions to ambient volatile organic compound concentrations in Berlin. J Air Waste Manage Assoc 49(12):1394–1404

    Article  Google Scholar 

  • Tolnai B, Hlavay J, Möller D, Prümke HJ, Becker H, Dostler M (2000) Combination of canister and solid adsorbent sampling techniques for determination of volatile organic hydrocarbons. Microchem J 67(1–3):163–169

    Article  CAS  Google Scholar 

  • Truc VTQ, Oanh NTK (2007) Roadside BTEX and other gaseous air pollutants in relation to emission sources. Atmos Environ 41(36):7685–7697

    Article  CAS  Google Scholar 

  • US EPA (2012) Technology transfer network air toxic website; Benzene. http://www3.epa.gov/airtoxics/hlthef/benzene.html

  • Zabiegała B, Namieśnik J, Przyk E, Przyjazny A (1999) Changes in concentration levels of selected VOCs in newly erected and remodelled buildings in Gdansk. Chemosphere 39(12):2035–2046

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from the Center of Excellence for Innovation in Chemistry (PERCH-CIC) and Graduate School of Chiang Mai University is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Chantara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tala, W., Chantara, S., Thiansem, S. et al. Development of low-cost passive sampler from cow bone char for sampling of volatile organic compounds. Int. J. Environ. Sci. Technol. 13, 1685–1696 (2016). https://doi.org/10.1007/s13762-016-1003-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-016-1003-6

Keywords

Navigation