A sandwiched denitrifying biocathode in a microbial fuel cell for electricity generation and waste minimization

Abstract

A denitrifying biocathode in a microbial fuel cell was developed to investigate the replacement of the costly Pt-coated abiotic cathodes for electricity generation. The denitrifying biocathode was sandwiched between the dual-anode systems. The study investigated the performance for simultaneous treatment of wastewater on the anode, biological denitrification on the cathode and the potential recovery of electrical energy. Autotrophic biofilms performed denitrification on the cathode using supplied electrons by the biodegradation of organics on the anode. Graphite granules were used as electrodes for biofilm attachment, and nafion membranes were used as separators between electrodes. The system achieved a volumetric power of 7 ± 0.4 W m−3 net cathodic compartment (NCC) with the simultaneous removal of 229.5 ± 18 mg L−1 COD on anode and 88.9 g m−3 NCC day−1 nitrogen on cathode, respectively. The columbic efficiency for cathodic and anodic reactions was 98.9 ± 0.57 and 23.54 ± 0.87 %, respectively. This is a combined study for domestic wastewater treatment and biological denitrification in a compact MFC reactor. Further optimization of the system is desired to improve its performance and applicability.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: reevaluation of a unique biological group. Microbiol Rev 43(2):260–296

    CAS  Google Scholar 

  2. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications. Wiley, New York

    Google Scholar 

  3. Bergel A, Feron D, Mollica A (2005) Catalysis of oxygen reduction in PEM fuel cell by seawater biofilm. Electrochem Commun 7:900–904

    CAS  Article  Google Scholar 

  4. Chaudhuri SK, Lovley DR (2003) Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat Biotech 21:1229–1232

    CAS  Article  Google Scholar 

  5. Clauwaert P, Rabaey K, Aelterman P, De Schamphelaire L, Pham HT, Boeckx P, Boon N, Verstraete W (2007a) Biological denitrification in microbial fuel cells. Environ Sci Technol 41(9):3354–3360

    CAS  Article  Google Scholar 

  6. Clauwaert P, Van der Ha D, Boon N, Verbeken K, Verhaege M, Rabaey K, Verstraete W (2007b) Open-air biocathode enables effective electricity generation with microbial fuel cells. Environ Sci Technol 41(21):7564–7569

    CAS  Article  Google Scholar 

  7. Collos Y, Mornet F, Sciandra A, Waser N, Larson A, Harrison PJ (1999) An optical method for the rapid measurement of micromolar concentrations of nitrate in marine phytoplankton cultures. J Appl Phycol 11:179–184

    Article  Google Scholar 

  8. Donoso-Bravo A, Ruiz-Filippi G, Chamy R (2009) Anaerobic treatment of low-strength wastewater with a high fraction of particulate matter in an unconventional two-phase ASBRs system. Biochem Eng J 43:297–302

    CAS  Article  Google Scholar 

  9. Freguia S, Rabaey K, Yuan Z, Keller J (2007) Electron and carbon balances in microbial fuel cells reveal temporary bacterial storage behavior during electricity generation. Environ Sci Technol 41(8):2915–2921

    CAS  Article  Google Scholar 

  10. Freguia S, Rabaey K, Yuan ZG, Keller J (2008) Sequential anode-cathode configuration improves cathodic oxygen reduction and effluent quality of microbial fuel cells. Water Res 42:1387–1396

    CAS  Article  Google Scholar 

  11. Gregory KB, Bond DR, Lovley DR (2004) Graphite electrodes as electron donors for anaerobic respiration. Environ Microbiol 6:596–604

    CAS  Article  Google Scholar 

  12. Juang DF, Yang PC, Lee CH, Hsueh SC, Kuo TH (2011) Electrogenic capabilities of gram negative and gram positive bacteria in microbial fuel cell combined with biological wastewater treatment. Int J Environ Sci Technol 8(4):781–792

    CAS  Article  Google Scholar 

  13. Juang DF, Yang PC, Kuo TH (2012) Effects of flow rate and chemical oxygen demand removal characteristics on power generation performance of microbial fuel cells. Int J Environ Sci Technol 9:267–280

    CAS  Article  Google Scholar 

  14. Lefebvre O, Al-Mamun A, Ng HY (2008a) A microbial fuel cell equipped with a biocathode for organic removal and denitrification. Water Sci Technol 58(4):881–885

    CAS  Article  Google Scholar 

  15. Lefebvre O, Al-Mamun A, Ooi WK, Tang Z, Chua DHC, Ng HY (2008b) An insight into cathode options for microbial fuel cells. Water Sci Technol 57(12):2031–2037

    CAS  Article  Google Scholar 

  16. Lefebvre O, Ooi WK, Tang Z, Al-Mamun A, Chua D, Ng HY (2009) Optimization of a Pt-free cathode suitable for practical applications of microbial fuel cells. Biores Technol 100:4907–4910

    CAS  Article  Google Scholar 

  17. Lefebvre O, Ha Nguyen TT, Al-Mamun A, Chang IS, Ng HY (2010) T-RFLP reveals high β-Proteobacteria diversity in microbial fuel cells enriched with domestic wastewater. J Appl Microbiol 109(3):839–850

    CAS  Article  Google Scholar 

  18. Li W, Zhang S, Chen G, Hua Y (2014) Simultaneous electricity generation and pollutant removal in microbial fuel cell with denitrifying biocathode over nitrite. Appl Energy 126:136–141

    CAS  Article  Google Scholar 

  19. Liu H, Logan BE (2004) Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ Sci Technol 38(14):4040–4046

    CAS  Article  Google Scholar 

  20. Liu H, Cheng S, Logan BE (2005) Production of electricity from acetate or butyrate in single chamber microbial fuel cell. Environ Sci Technol 39(2):658–662

    CAS  Article  Google Scholar 

  21. Logan BE, Hamelers B, Rozenda R, Schroder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40:5181–5192

    CAS  Article  Google Scholar 

  22. Logan BE, Cheng S, Valerie W, Garett E (2007) Graphite fiber brush anodes for increased power production in air cathode microbial fuel cells. Environ Sci Technol 41:3341–3346

    CAS  Article  Google Scholar 

  23. Lovley DR (2006) Harvesting electricity with microorganisms. Natural Rev Microbiol 4:497–508

    CAS  Article  Google Scholar 

  24. Lovley DR, Phillips EJP (1988) Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol 54(6):1472–1480

    CAS  Google Scholar 

  25. Lovley DR, Greening RC, Ferry JG (1984) Rapidly growing rumen methanogenic organism that synthesizes coenzyme-M and has a high affinity for formate. Appl Environ Microbiol 48(1):81–87

    CAS  Google Scholar 

  26. Min B, Logan BE (2004) Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environ Sci Technol 38:5809–5814

    CAS  Article  Google Scholar 

  27. Nasirahmadi S, Safekordi AA (2012) Enhanced electricity generation from whey wastewater using combinational cathodic electron acceptor in a two-chamber microbial fuel cell. Int J Environ Sci Technol 9:473–478

    CAS  Article  Google Scholar 

  28. Park HI, Kim DK, Choi YJ, Pak D (2005) Nitrate reduction using an electrode as direct electron donor in a biofilm-electrode reactor. Process Biochem 40(10):3383–3388

    CAS  Article  Google Scholar 

  29. Pynaert K, Smets BF, Beheydt D, Verstraete W (2004) Start-up of autotrophic nitrogen removal reactors via sequential biocatalyst addition. Environ Sci Tech 38:1228–1235

    CAS  Article  Google Scholar 

  30. Rabaey K, Verstraete W (2005) Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol 23:291–298

    CAS  Article  Google Scholar 

  31. Rabaey K, Clauwaert P, Aelterman P, Verstraete W (2005) Tubular microbial fuel cells for efficient electricity generation. Environ Sci Technol 39:8077–8082

    CAS  Article  Google Scholar 

  32. Rozendal RA, Hamelers HVM, Buisman CJN (2006) Effects of membrane cation transport on pH and microbial fuel cell performance. Environ Sci Technol 40(17):5206–5211

    CAS  Article  Google Scholar 

  33. Rozendal RA, Hamelers HVM, Rabaey K, Keller J, Buisman CJN (2008) Towards practical implementation of bioelectrochemical wastewater treatment. Trends Biotechnol 26:450–459

    CAS  Article  Google Scholar 

  34. TerHeijne A, Hamelers HVM, deWilde V, Rozendal RA, Buisman CJN (2006) A bipolar membrane combined with ferric iron reduction as an efficient cathode system in microbial fuel cells. Environ Sci Technol 40:5200–5205

    CAS  Article  Google Scholar 

  35. Virdis B, Rabaey K, Yuan Z, Keller J (2008) Microbial fuel cells for simultaneous carbon and nitrogen removal. Water Res 42(12):3013–3024

    CAS  Article  Google Scholar 

  36. Virdis B, Rabaey K, Rozendal RA, Yuan Z, Keller J (2010) Simultaneous nitrification, denitrification and carbon removal in microbial fuel cells. Water Res 44(9):2970–2980

    CAS  Article  Google Scholar 

  37. Xie S, Liang P, Chen Y, Xia X, Huang X (2011) Simultaneous carbon and nitrogen removal using an oxic/anoxic-biocathode microbial fuel cells coupled system. Biores Technol 102:348–354

    CAS  Article  Google Scholar 

  38. Zhang F, Zhen H (2012) Integrated organic and nitrogen removal with electricity generation in a tubular dual-cathode microbial fuel cell. Process Biochem 47(12):2146–2151

    CAS  Article  Google Scholar 

  39. Zhang G, Zhang H, Zhang C, Zhang G, Yang F, Yuan G, Gao F (2013) Simultaneous nitrogen and carbon removal in a single chamber microbial fuel cell with a rotating biocathode. Process Biochem 48:893–900

    CAS  Article  Google Scholar 

  40. Zhao F, Harnisch F, Schroder U, Scholz F, Bogdanoff P, Herrmann I (2005) Application of pyrolysed iron(II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells. Electrochem Commun 7:1405–1410

    CAS  Article  Google Scholar 

  41. Zhen H, Largus TA (2006) Application of bacterial bio-cathodes in microbial fuel cells. Environ Sci Tech 40:5212–5214

    Article  Google Scholar 

Download references

Acknowledgments

Our sincere gratitude to Mr. S.G. Chandrasegaran for his technical assistance during fabrication of microbial fuel cells used in this study. Thanks to Miss Tan Hwee Bee, Miss Lee Leng Leng and Miss Tan Xiaolan to assist us in operating the equipments used for different analysis. This work was supported by a Grant from the Environment & Water and Industry Development Council, Singapore (MEWR 651/06/159).

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Al-Mamun.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Al-Mamun, A., Lefebvre, O., Baawain, M.S. et al. A sandwiched denitrifying biocathode in a microbial fuel cell for electricity generation and waste minimization. Int. J. Environ. Sci. Technol. 13, 1055–1064 (2016). https://doi.org/10.1007/s13762-016-0943-1

Download citation

Keywords

  • Autotrophic biofilms
  • Biocathode
  • Bioelectricity production
  • Biological denitrification
  • Microbial fuel cell
  • Microbial electrochemistry