Skip to main content
Log in

Air classification of blast furnace dust catcher dust for zinc load reduction at the sinter plant

  • Short Communication
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

The off-gas discharged from a blast furnace is de-dusted in a first stage by a dust catcher or a cyclone. The separated dust consists mainly of iron and coke. Therefore, most of this dust is recycled in the sinter plant. A higher Zn content of the dust is undesirable because the allowed Zn content in the sinter feed material is limited. The reduction of the Zn content of the dust by a simple process would be helpful in the case of higher Zn content in the blast furnace dust. In classification experiments, it has been demonstrated that the Zn content of the blast furnace dust increases with decreasing particle size. Thus, air classification of the dust can be applied to separate the Zn-enriched fines. By separating a small fraction of fines (about 10–20 %) from the blast furnace dust, a reduction of the mass of Zn in the remaining coarse fraction for recycling in the range of 40–60 % is possible and only 5–10 % of the carbon is lost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Asadi Zeydabadi B, Mowla D, Shariat MH, Fathi Kalajahi J (1997) Zinc recovery from blast furnace dust. Hydrometallurgy 47(1):113–125

    Article  CAS  Google Scholar 

  • Craig IM (2008) Innovative technologies for blast furnaces. Stahl Eisen 128(11):S89–S97

    CAS  Google Scholar 

  • Das B, Prakash S, Reddy PSR, Misra VN (2007) An overview of utilization of slag and sludge from steel industries. Resour Conserv Recycl 50(1):40–57

    Article  Google Scholar 

  • Doronin IE, Svyazhin AG (2011) Commercial methods of recycling dust from steelmaking. Metallurgist 54(9–10):673–681

    Article  CAS  Google Scholar 

  • Großpietsch K-H, Lüngen HB, Theobald W (2001) BAT an Hochöfen—eine Bestandsaufnahme zum derzeitigen Umweltschutz an Hochöfen. Stahl Eisen 121(5):51–57

    Google Scholar 

  • Hansmann T, Fontana P, Chiappero A, Both I, Roth J-L (2008) Technologies for the optimum recycling of steelmaking residues. Stahl Eisen 128(5):29–35

    CAS  Google Scholar 

  • Jansson B, Sundqvist Ökvist L (2004) Injection of BF flue dust into the BF—a full-scale test at BF No. 3 in Luleå. In: SCANMET II, 2nd international conference on process development in iron and steelmaking, June 6–9, 2004, Luleå

  • Koros PJ (2003) Dusts, scale, slags, sludges … not wastes, but source of profits. Metall Mater Trans B 34B:769–779

    Article  CAS  Google Scholar 

  • Lajtonyi A (2006) Blast furnaces gas cleaning systems. Millenium Steel 2006:57–65

    Google Scholar 

  • Lanzerstorfer C (2015) Air classification—a potential treatment method of fine grained residues collected in dry off-gas cleaning systems of high temperature processes for optimized dust recycling or utilization. Waste Manage Res. doi:10.1177/0734242X15597997

    Google Scholar 

  • Lanzerstorfer C, Kröppl M (2014) Air classification of blast furnace dust collected in a fabric filter for recycling to the sinter process. Resour Conserv Recycl 86:132–137

    Article  Google Scholar 

  • Lanzerstorfer C, Neuhold R (2015) Residues from single-stage dry de-dusting and desulphurization of sinter plant off-gas: enabling partial recirculation by classification. Intern J Environ Sci Technol 12:2939–2946

    Article  CAS  Google Scholar 

  • Lanzerstorfer C, Xu Q (2014) Neue Entwicklungen zur Gichtgasreinigung von Hochöfen: ein Überblick. BHM 159:91–98

    Google Scholar 

  • Lanzerstorfer C, Bamberger-Straßmayr B, Pilz K (2015) Recycling of blast furnace dust in the iron ore sinter process: investigation of coke breeze substitution and the influence on off-gas emissions. ISIJ Int 55(4):758–764

    Article  CAS  Google Scholar 

  • Leclerc N, Meux E, Lecuire J-M (2003) Hydrometallurgical extraction of zinc from zinc ferrites. Hydrometallurgy 70:175–183

    Article  CAS  Google Scholar 

  • Malemud SG, Mal‘tsev VA, Yurév BP (2013) Kinetic analysis of the reduction of zinc and iron oxides from dust and slurry. Steel Transl 43:78–82

    Google Scholar 

  • Murai T, Kometani A, Ono Y, Hashimoto T (1986) Blast furnace gas dry cleaning system and dry removal system of zing in dry dust. Sumitomo Search 32:1–7

    CAS  Google Scholar 

  • Remus R, Aguado-Monsonet MA, Roudier S, Sancho LD (2013) Best available techniques (BAT) reference document for iron and steel production, industrial emissions directive 2010/75/EU, integrated pollution prevention and control. Publications Office of the European Union, Luxembourg

  • Skroch R, Mayer-Schwinning G (2012) Iron, 6. Aspects of environmental protection. In: Ullmann’s encyclopedia of industrial chemistry, vol 20. Wiley-VCH, Weinheim, pp 25–31

  • Stepin GM, Mkrtchan LS, Dovlyadnov IV, Borshchevskii IK (2001) Problems related to the presence of zinc in Russian blast-furnace smelting and ways of solving them. Metallurgist 45(9–10):382–390

    Article  CAS  Google Scholar 

  • Streit GT (2007) Gas cleaning systems in ironmaking blast furnaces. In: Proceedings of ASITech 2007, Indianapolis, 2007. Association for Iron & Steel Technology, Warrendale, pp 1–8

  • Suvorov MN (2009) Equipment and technology of the Paul Wurth company—a way of lowering the production cost of pig iron. Metallurgist 53(7–8):451–459

    Article  CAS  Google Scholar 

  • Więcek M, Mrόz J (2014) Characteristics of fine-grid iron-bearing materials—dusts, sludges, mill-scale sludges. Acta Metall Slovaca Conf 4:106–113

    Google Scholar 

  • Winfield D, Cross M, Croft N, Paddison D (2012) Geometry optimisation of a gravity dust-catcher using computational fluid dynamics simulation. Chem Eng Process 62:137–144

    Article  CAS  Google Scholar 

  • Winfield D, Paddison D, Cross M, Croft N, Craig I (2013) Performance comparison of a blast furnace gravity dust-catcher vs. tangential triple inlet gas separation cyclone using computational fluid dynamics. Sep Purif Technol 115:205–215

    Article  CAS  Google Scholar 

  • Zhang F-M (2009) Study on dry type bag filter cleaning technology of BF gas at large blast furnace. In: Proceedings of the 5th international congress on the science and technology of ironmaking (ICSTI’09). The Chinese Society for Metals, Shanghai, pp 608–612

Download references

Acknowledgments

The author wants to thank the University of Applied Sciences Upper Austria for funding the work (KSt 8541). Fe and Zn analysis by G.-C. Kastner and proofreading by D. Moser are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Lanzerstorfer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lanzerstorfer, C. Air classification of blast furnace dust catcher dust for zinc load reduction at the sinter plant. Int. J. Environ. Sci. Technol. 13, 755–760 (2016). https://doi.org/10.1007/s13762-015-0903-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-015-0903-1

Keywords

Navigation