Skip to main content
Log in

Magnetic sweet graphene nanosheets: preparation, characterization and application in removal of methylene blue

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Magnetic glucose-functionalized graphene nanosheets (GNS) were prepared, and the application of these biosorbents in the removal of methylene blue was investigated. Fe3O4 nanoparticles were deposited on sweet GNS using co-precipitation. The nanocomposites were analyzed by Fourier transform infrared spectroscopy, field emission scanning electron microscopy, transition electron microscopy, vibrating sample magnetometer and X-ray diffraction spectrometry. The resulted magnetic sweet GNS were superparamagnetic, responded quickly to an external magnetic field and exhibited efficient adsorption toward methylene blue, as a cationic dye. No leaching was observed even after a week of placing a magnet close to the vial containing the solution of magnetic sweet GNS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ai L, Jiang J (2012) Removal of methylene blue from aqueous solution with self-assembled cylindrical graphene–carbon nanotube hybrid. Chem Eng J 192:156–163

    Article  CAS  Google Scholar 

  • Ai L, Zhang C, Chen Z (2011) Removal of methylene blue from aqueous solution by a solvothermal-synthesized graphene/magnetite composite. J Hazard Mater 192:1515–1524

    Article  CAS  Google Scholar 

  • Capar G, Yetis U, Yilmaz L (2006) Membrane based strategies for the pre-treatment of acid dye bath wastewaters. J Hazard Mater 135:423–430

    Article  CAS  Google Scholar 

  • Chang PR, Yua J, Maa X, Anderson DP (2011) Polysaccharides as stabilizers for the synthesis of magnetic nanoparticles. Carbohyd Polym 83:640–644

    Article  CAS  Google Scholar 

  • Chen P, Liang H-W, Lv X-H, Zhu H-Z, Yao H-B, Yu S-H (2011) Carbonaceous nanofiber membrane functionalized by β-cyclodextrins for molecular filtration. ACS Nano 5:5928–5935

    Article  CAS  Google Scholar 

  • Cho SJ, Idrobo JC, Olamit J, Liu K, Browning ND, Kauzlarich SM (2005) Growth mechanisms and oxidation resistance of gold coated iron nanoparticles. Chem Mater 17:3181–3186

    Article  CAS  Google Scholar 

  • Cong H-P, He J-J, Lu Y, Yu S-H (2010) Water-soluble magnetic-functionalized reduced graphene oxide sheets: in situ synthesis and magnetic resonance imaging applications. Small 6:169–173

    Article  CAS  Google Scholar 

  • De Lisi R, Lazzara G, Milioto S, Muratore N (2007) Adsorption of a dye on clay and sand: use of cyclodextrins as solubility-enhancement agents. Chemosphere 69:1703–1712

    Article  Google Scholar 

  • Dutta K, Mukhopadhyaya S, Bhattacharjee S, Chaudhuri B (2001) Chemical oxidation of methylene blue using a Fenton-like reaction. J Hazard Mater 84:57–61

    Article  CAS  Google Scholar 

  • Geng Z, Lin Y, Yu X, Shen Q, Ma L, Li Z, Pan N, Wang X (2012) Highly efficient dye adsorption and removal: a functional hybrid of reduced graphene oxide–Fe3O4 nanoparticles as an easily regenerative adsorbent. J Mater Chem 22:3527–3535

    Article  CAS  Google Scholar 

  • Guibal E, Roussy J (2007) Coagulation and flocculation of dye-containing solutions using a biopolymer (Chitosan). React Funct Polym 67:33–42

    Article  CAS  Google Scholar 

  • He F, Fan J, Ma D, Zhang L, Leung C, Chan HL (2010) The attachment of Fe3O4 nanoparticles to graphene oxide by covalent bonding. Carbon 48:3139–3144

    Article  CAS  Google Scholar 

  • Hong RY, Feng B, Liua G, Wang S, Li HZ, Ding JM, Zheng Y, Wei DG (2009) Preparation and characterization of Fe3O4/polystyrene composite particles via inverse emulsion polymerization. J Alloys Compd 476:612–618

    Article  CAS  Google Scholar 

  • Indira TK, Lakshmi PK (2010) Magnetic nanoparticles—a review. Int J Pharm Sci Nanotech 3:1035–1042

    CAS  Google Scholar 

  • Juang RS, Wu FC, Tseng RL (2000) Mechanism of adsorption of dyes and phenols from water using activated carbons prepared from plum kernels. J Colloid Interface Sci 227:437–444

    Article  CAS  Google Scholar 

  • Kabiri R, Namazi H (2014a) Nanocrystalline cellulose acetate (NCCA)/graphene oxide (GO) nanocomposites with enhanced mechanical properties and barrier against water vapor. Cellulose 21:3527–3539

    Article  CAS  Google Scholar 

  • Kabiri R, Namazi H (2014b) Surface grafting of reduced graphene oxide using nanocrystalline cellulose via click reaction. J Nanopart Res 16:2474–2478

    Article  Google Scholar 

  • Kornaros M, Lyberatos G (2006) Biological treatment of wastewaters from a dye manufacturing company using a trickling filter. J Hazard Mater 136:95–102

    Article  CAS  Google Scholar 

  • Kui L, Xia ZG, Ke WX (2012) A brief review of graphene-based material synthesis and its application in environmental pollution management. Chin Sci Bull 57:1223–1234

    Article  Google Scholar 

  • Li GY, Jiang YR, Huang KL, Ding P, Chen J (2008) Preparation and properties of magnetic Fe3O4–chitosan nanoparticle. J Alloys Compd 466:451–456

    Article  CAS  Google Scholar 

  • Li B, Cao H, Shao J, Qu M, Warner JH (2011a) Superparamagnetic Fe3O4 nanocrystals@graphene composites for energy storage devices. J Mater Chem 21:5069–5075

    Article  CAS  Google Scholar 

  • Li Y, Chua J, Qib J, Li X (2011b) An easy and novel approach for the decoration of graphene oxide by Fe3O4 nanoparticles. Appl Surf Sci 257:6059–6062

    Article  CAS  Google Scholar 

  • Liu CH, Wu JS, Chiu HS, Suen SY, Chu KH (2007) Removal of anionic reactive dyes from water using anion exchange membranes as adsorbers. Water Res 41:1491–1500

    Article  CAS  Google Scholar 

  • Liu Y-W, Guan M-X, Feng L, Deng S-L, Bao J-F, Xie S-Y, Chen Z, Huang R-B, Zheng L-S (2013) Facile and straightforward synthesis of superparamagnetic reduced graphene oxide–Fe3O4 hybrid composite by a solvothermal reaction. Nanotechnology 24:25604–25614

    Article  Google Scholar 

  • Monash P, Pugazhenthi G (2009) Adsorption of crystal violet dye from aqueous solution using mesoporous materials synthesized at room temperature. Adsorption 15:390–405

    Article  CAS  Google Scholar 

  • Muruganandham M, Swaminathan M (2006) TiO2–UV photocatalytic oxidation of Reactive Yellow 14: effect of operational parameters. J Hazard Mater 135:78–86

    Article  CAS  Google Scholar 

  • Namvari M, Namazi H (2014a) Clicking graphene oxide and Fe3O4 nanoparticles together: an efficient adsorbent to remove dyes from aqueous solutions. Int J Environm Sci Technol 11:1527–1536

    Article  CAS  Google Scholar 

  • Namvari M, Namazi H (2014b) Sweet graphene I: fabrication of water-soluble graphene nanosheets by covalently attaching alkyne-terminated saccharides onto azide-modified graphene oxide by “click” chemistry. Carbohyd Res 396:1–8

    Article  CAS  Google Scholar 

  • Namvari M, Namazi H (2014c) Synthesis of magnetic citric acid-functionalized graphene oxide and its application in the removal of methylene blue from contaminated water. Polym Int 63:1881–1888

    Article  CAS  Google Scholar 

  • Namvari M, Namazi H (2015) Preparation of efficient magnetic biosorbents by clicking carbohydrates onto graphene oxide. J Mater Sci 50:5348–5361

    Article  CAS  Google Scholar 

  • Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  Google Scholar 

  • Qu S, Huang F, Yu SN, Chen G, Kong JL (2008) Magnetic removal of dyes from aqueous solution using multi-walled carbon nanotubes filled with Fe2O3 particles. J Hazard Mater 160:643–647

    Article  CAS  Google Scholar 

  • Ramesha GK, Kumara AV, Muralidhara HB, Sampath S (2011) Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes. J Colloid Interface Sci 361:270–277

    Article  CAS  Google Scholar 

  • Shen JF, Hu YZ, Shi M, Li N, Ma HW, Ye MX (2010) One step synthesis of graphene oxide—magnetic nanoparticle composite. J Phys Chem C 114:1498–1503

    Article  CAS  Google Scholar 

  • Shin S, Jang J (2007) Thiol containing polymer encapsulated magnetic nanoparticles as reusable and efficiently separable adsorbent for heavy metal ions. Chem Commun 41:4230–4232

    Article  Google Scholar 

  • Sun H, Cao L, Lu L (2011) Magnetite/reduced graphene oxide nanocomposites: one step solvothermal synthesis and use as a novel platform for removal of dye pollutants. Nano Res 4:550–562

    Article  CAS  Google Scholar 

  • Thuy-Duong NP, Hung VP, Kim EJ, Oh ES, Hur SH, Chung JS (2012) Reduced graphene oxide–titanate hybrids: morphologic evolution by alkali-solvothermal treatment and applications in water purification. Appl Surf Sci 258:4551–4557

    Article  Google Scholar 

  • Wang C, Feng C, Gao Y, Ma X, Wu Q, Wang Z (2011) Preparation of a graphene-based magnetic nanocomposite for the removal of an organic dye from aqueous solution. Chem Eng J 173:92–97

    Article  CAS  Google Scholar 

  • Xie G, Xi P, Liu H, Chen F, Huang L, Shi Y, Hou F, Zeng Z, Shao C, Wang J (2012) A facile chemical method to produce superparamagnetic grapheme oxide–Fe3O4 hybrid composite and its application in the removal of dyes from aqueous solution. J Mater Chem 22:1033–1039

    Article  CAS  Google Scholar 

  • Yang X, Zhang X, Ma Y, Huang Y, Wang Y, Chen Y (2009) Superparamagnetic graphene oxide–Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. J Mater Chem 19:2710–2714

    Article  CAS  Google Scholar 

  • Yang S-T, Chen S, Chang Y, Cao A, Liu Y, Wang H (2011) Removal of methylene blue from aqueous solution by graphene oxide. J Colloid Interface Sci 359:24–29

    Article  CAS  Google Scholar 

  • Yao Y, Miao S, Liu S, Ma LP, Sun H, Wang S (2012) Synthesis, characterization, and adsorption properties of magnetic Fe3O4@graphene nanocomposite. Chem Eng J 184:326–332

    Article  CAS  Google Scholar 

  • Zhan Y, Yang X, Meng F, Wei J, Zhao R, Liu X (2011) Controllable synthesis, magnetism and solubility enhancement of graphene nanosheets/magnetite hybrid material by covalent bonding. J Colloid Interface Sci 363:98–104

    Article  CAS  Google Scholar 

  • Zhang X, Yang X, Ma Y, Huang Y, Chen Y (2010) Coordination of graphene oxide with Fe3O4 nanoparticles and its enhanced optical limiting property. J Nanosci Nanotechnol 10:2984–2987

    Article  CAS  Google Scholar 

  • Zhao W, Wu Z, Wang D (2006) Ozone direct oxidation kinetics of Cationic Red X-GRL in aqueous solution. J Hazard Mater 137:1859–1865

    Article  CAS  Google Scholar 

  • Zhu AP, Yuan LH, Liao TQ (2008) Suspension of Fe3O4 nanoparticles stabilized by chitosan and o-carboxymethyl chitosan. Int J Pharm 350:361–368

    Article  CAS  Google Scholar 

  • Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924

    Article  CAS  Google Scholar 

  • Zhu JH, Wei SY, Haldolaarachchige N, Young DP, Guo ZH (2011) Electromagnetic field shielding polyurethane nanocomposites reinforced with core-shell Fe-silica nanoparticles. J Phys Chem C 115:15304–15310

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are pleased to acknowledge the University of Tabriz (Grant Number S/27/3243-29) and Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Science, for financial support of this work. The authors would like to thank the Nanshan District Key Lab for Biopolymers and Safety Evaluation (No.KC2014ZDZJ0001A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Namazi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Namvari, M., Namazi, H. Magnetic sweet graphene nanosheets: preparation, characterization and application in removal of methylene blue. Int. J. Environ. Sci. Technol. 13, 599–606 (2016). https://doi.org/10.1007/s13762-015-0885-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-015-0885-z

Keywords

Navigation