Exogenous application of ethylenediamminetetraacetic acid enhanced phytoremediation of cadmium by Brassica napus L.

Abstract

Performance of B. napus in phytoextraction—an in situ environment friendly technique for the cleanup of contaminated soils—was evaluated through its response to cadmium (Cd) toxicity in combination with a chelator ethylenediamminetetraacetic acid (EDTA) while growing hydroponically in greenhouse conditions under three levels of Cd (0, 10, and 50 µM) and two levels of EDTA (0 and 2.5 mM). Cadmium presence decreased plant growth, biomass and chlorophyll concentrations, while the application of EDTA enhanced plant growth by reducing Cd-induced effects in Cd-stressed plants. Addition of EDTA improved the net photosynthetic and gas exchange capacity of plants under Cd stress. Presence of Cd at 10 and 50 μM significantly increased electrolyte leakage, the production of hydrogen peroxidase (H2O2) and malondialdehyde (MDA) resulting into a significant reduction in the activities of catalase, guaiacol peroxidase, ascorbate peroxidase and superoxide dismutase in Cd-stressed plants. Application of EDTA at the rate of 2.5 mM alone and with combination of Cd increased the antioxidant enzymes activities and reduced the electrolyte leakage and production of H2O2 and MDA. The B. napus actively accumulated Cd when applied with EDTA in roots, stems and leaves viz. 2817, 2207 and 1238 mg kg−1 DW, respectively, at higher Cd level (50 μM) followed by lower level of Cd (10 μM) viz. 1704, 1366 and 763 mg kg−1 DW, respectively. Results showed that this technique could be useful for the remediation of heavy metal-contaminated agricultural and industrial soils.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    CAS  Article  Google Scholar 

  2. Ali B, Wang B, Ali S, Ghani MA, Hayat MT, Yang C, Xu L, Zhou WJ (2013) 5-Aminolevulinic acid ameliorates the growth, photosynthetic gas exchange capacity, and ultrastructural changes under cadmium stress in Brassica napus L. J Plant Growth Regul 32:604–614

    CAS  Article  Google Scholar 

  3. Anwaar SA, Ali S, Ali S, Ishaque W, Farid M, Farooq MA, Najeeb U, Abbas F, Sharif M (2014) Silicon (Si) alleviates cotton (Gossypium hirsutum L.) from zinc (Zn) toxicity stress by limiting Zn uptake and oxidative damage. Environ Sci Pollut Res. doi:10.1007/s11356-014-3938-9

  4. Azevedo H, Gomes C, Pinto G, Fernandes J, Loureiro S, Santos C (2005) Cadmium effects on Sunflower growth and photosynthesis, Dept of Biology, University of Aveiro, Portugal. J Plant Nutr 28:2211–2220

    CAS  Article  Google Scholar 

  5. Bareen FE (2012) Chelate assisted phytoextraction using oilseed brassicas. Environ Pollut 21:289–311

    Article  Google Scholar 

  6. Bharwana SA, Ali S, Farooq MA, Iqbal N, Hameed A, Abbas F, Ahmad MSA (2014) Glycine betaine-induced lead toxicity tolerance related to elevated photosynthesis, antioxidant enzymes suppressed lead uptake and oxidative stress in cotton. Turk J Bot 38:192–281

    Article  Google Scholar 

  7. Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Chem 72:248–254

    CAS  Google Scholar 

  8. Chance B, Maehly AC (1955) Assay of catalases and peroxidases. Methods Biochem Anal 136:764–775

    Google Scholar 

  9. Chigbo C, Batty L (2013) Effect of EDTA and citric acid on phytoremediation of Cr-B [a] P-co-contaminated soil. Environ Sci Pollut Res 20:8955–8963

    CAS  Article  Google Scholar 

  10. Dionisio-Sese ML, Tobita S (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Sci 135:1–9

    CAS  Article  Google Scholar 

  11. Dixit V, Pandey V, Shyam R (2001) Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad). J Exp Bot 52:1101–1109

    CAS  Article  Google Scholar 

  12. Ehsan S, Ali S, Noureen S, Mahmood K, Farid M, Ishaque W, Shakoor MB, Rizwan M (2014) Citric acid assisted phytoremediation of cadmium by Brassica napus L. Ecotoxicol Environ Safe 106:164–172

    CAS  Article  Google Scholar 

  13. Evangelou MW, Ebel M, Schaeffer A (2007) Chelate assisted phytoextraction of heavy metals from soil. Effect, mechanism, toxicity and fate of chelating agents. Chemosphere 68:989–1003

    CAS  Article  Google Scholar 

  14. Ghani A (2011) Varietal differences in canola (Brassica napus L.) for the growth, yield and yield components exposed to cadmium stress. J Anim Plant Sci 21:57–59

    CAS  Google Scholar 

  15. Ghosh M, Singh SP (2005a) A review on phytoremediation of heavy metals and utilization of it’s by products. Asian J Energy Environ 6:214–231

    Google Scholar 

  16. Ghosh M, Singh SP (2005b) A comparative study of cadmium phytoremediation by accumulator and weed species. Environ Pollut 1:365–371

    Article  Google Scholar 

  17. Giannopolitis CN, Ries SK (1977) Superoxide dismutases: occurrence in higher plants. Plant Physiol 59:309–314

    CAS  Article  Google Scholar 

  18. Gill SS, Khan NA, Tuteja N (2011a) Amelioration of cadmium stress in crop plants by nutrients management: morphological, physiological and biochemical aspects. Plant Stress 5:1–23

    Google Scholar 

  19. Gill SS, Khan NA, Tuteja N (2011b) Differential cadmium stress tolerance in five Indian mustard (Brassica juncea L.) cultivars an evaluation of the role of antioxidant machinery. Plant Signal Behav 6:293–300

    CAS  Article  Google Scholar 

  20. Gill RA, Zang L, Ali B, Farooq MA, Cui P, Yang S, Zhou W (2015) Chromium-induced physio-chemical and ultrastructural changes in four cultivars of Brassica napus L. Chemosphere 120:154–164

    CAS  Article  Google Scholar 

  21. Glass DJ (2009) US and international markets for phytoremediation, 1999–2000. D. Glass Associates, lnc, Needham

    Google Scholar 

  22. Goldate WC, Aldina G (2010) Mixing a portion of the bottom ash with all the fly ash to obtain a stabilized material of sufficient alkalinity to prevent the leaching of toxic metals in landfills. U.S. Patent No. 7,682,446. US Patent and Trademark Office, Washington

  23. Gong H, Zhu X, Chen K, Wang S, Zhang C (2005) Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci 169:313–321

    CAS  Article  Google Scholar 

  24. Greipsson S (2011) Phytoremediation. Nat Edu Knowl 3:1–5

    Google Scholar 

  25. Gupta DK, Nicolosoa FT, Schetingerb MRC, Rossatoa LV, Pereirab LB, Castroa GY, Srivastavac S, Tripathi RD (2009) Antioxidant defense mechanism in hydroponically grown Zea mays seedlings under moderate lead stress. J Hazard Mater 172:479–484

    CAS  Article  Google Scholar 

  26. Han F, Shan XQ, Zhang J, Xie YN, Pei ZJ, Zhang SZ, Zhu YG, Wen B (2005) Organic acids promote the uptake of lanthanum by barley roots. New Phytol 165:481–492

    CAS  Article  Google Scholar 

  27. Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    CAS  Article  Google Scholar 

  28. Hernández-Allica J, Becerril JM, Garbisu C (2008) Assessment of the phytoextraction potential of high biomass crop plants. Environ Pollut 152:32–40

    Article  Google Scholar 

  29. Luo CL, Shen ZG, Li XD (2005) Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS. Chemosphere 59:1–11

    CAS  Article  Google Scholar 

  30. Mccutcheon SC, Rock SA (2007) Phytoremediation: state of the science conference and other developments. Int J Phytorem 3:1–11

    Article  Google Scholar 

  31. Meers E, Ruttens A, Hopgood MJ, Samson D, Tack FMG (2005) Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals. Chemosphere 58:1011–1022

    CAS  Article  Google Scholar 

  32. Metwally A, Safronova VI, Bellimov AA, Dietz KJ (2005) Genotypic variation of the response to cadmium toxicity in Pisumsativum L. J Exp Bot 56:167–178

    CAS  Google Scholar 

  33. Metzner H, Rau H, Senger H (1965) Untersuchungen zur synchron isierbakeitein zelnerpi gmentmangel-mutation von chlorella. Planta 65:186–194

    CAS  Article  Google Scholar 

  34. Muhammad D, Chen F, Zhao J, Zhang G, Wu F (2009) Comparison of EDTA- and citric acid-enhanced phytoextraction of heavy metals in artificially metal contaminated soil by Typha angustifolia. Int J Phytorem 11:558–574

    CAS  Article  Google Scholar 

  35. Najeeb U, Xua L, Ali S, Jilani G, Gong HJ, Shen WQ, Zhou WJ (2009) Citric acid enhances the phytoextraction of manganese and plant growth by alleviating the ultrastructural damages in JuncuseffususL. J Hazard Mater 170:1156–1163

    CAS  Article  Google Scholar 

  36. Najeeb U, Jilani G, Ali S, Sarwar M, Xu L, Zhou W (2011) Insights into cadmium induced physiological and ultra-structural disorders in Juncus effusus L. and its remediation through exogenous citric acid. J Hazard Mater 186:565–574

    CAS  Article  Google Scholar 

  37. Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:679–690

    Google Scholar 

  38. Nwugol CC, Huerta AJ (2008) Silicon-induced cadmium resistance in rice (Oryza sativa). Soil Sci 171:841–848

    Google Scholar 

  39. Ruttens A, Mench M, Colpaert JV, Boisson J, Carleer R, Vangronsveld J (2006) Phytostabilization of a metal contaminated sandy soil. I: influence of compost and/or inorganic metal immobilizing soil amendments on phytotoxicity and plant availability of metals. Environ Pollut 144:524–532

    CAS  Article  Google Scholar 

  40. Shakoor MB, Ali S, Hameed A, Farid M, Hussain S, Yasmeen T, Najeeb U, Bharwana SA, Abbasi GH (2014) Citric acid improves lead (Pb) phytoextraction in Brassica napus L. by mitigating pb-induced morphological and biochemical damages. Ecotoxicol Environ Saf 109:38–47

    Article  Google Scholar 

  41. Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot. doi:10.1155/2012/217037

    Google Scholar 

  42. Shi GR, Cai QS, Liu CF, Wu L (2010) Silicon alleviates cadmium toxicity in peanut plants in relation to cadmium distribution and stimulation of antioxidative enzymes. Plant Growth Regul 245:261–288

    Google Scholar 

  43. Singh S, Eapen S, D’Souza SF (2006) Cadmium accumulation and its influence on lipid peroxidation and antioxidative system in an aquatic plant, Bacopamonnieri L. Chemosphere 62:233–246

    CAS  Article  Google Scholar 

  44. Smeets K, Cuypers A, Lambrechts A, Semane B, Hoet P, Van AL, Vangronsveld J (2005) Induction of oxidative stress and antioxidative mechanisms in Phaseolus vulgaris after Cd application. Plant Physiol Biochem 43:437–444

    CAS  Article  Google Scholar 

  45. Song S, Li Z, Zhang J, Xue G, Fan F, Liang Y (2009) Silicon-enhanced resistance to cadmium toxicity in Brassica chinensis L. is attributed to Si-suppressed cadmium uptake and transport and Si-enhanced antioxidant defense capacity. J Hazard Mater 172:74–83

    CAS  Article  Google Scholar 

  46. Szczygłowska M, Piekarska A, Konieczka P, Namiesnik J (2011) Use of brassica plants in the phytoremediation and biofumigation processes. Int J Mol Sci 12:7760–7771

    Article  Google Scholar 

  47. Szekely A, Poor P, Bagi I, Csiszar J, Gemes K, Horvath F, Tari I (2011) Effect of EDTA on the growth and copper accumulation of sweet sorghum and sudangrass seedlings. Acta Biol Szeged 55:159–164

    Google Scholar 

  48. VaculíK M, Lux A, Luxovac M, Tanimoto E, Lichtscheidl I (2009) Silicon mitigates cadmium inhibitory effects in young maize plants. Ecotoxicol Environ Saf 67:52–58

    Google Scholar 

  49. Wahid A, Ghani A, Javed F (2008) Effect of cadmium on photosynthesis, nutrition and growth of mungbean. Agron Sustain Dev 28:273–280

    CAS  Article  Google Scholar 

  50. Wan H, Shan XQ, Liu T, Xie Y, Wen B, Zhang S, Han F (2007) Genuchten, organic acids enhance the uptake of Pb by wheat roots. Planta 225:1483–1494

    Article  Google Scholar 

  51. Wang P, Duan W, Takabayashi A, Endo T, Shikanai T, Ye JY, Mi H (2006) Chloroplastic NAD (P) H dehydrogenase in tobacco leaves functions in alleviation of oxidative damage caused by temperature stress. Plant Physiol 141:465–474

    CAS  Article  Google Scholar 

  52. Wang C, Sun Q, Wang L (2009) Cadmium toxicity and phytochelatins production in a rooted-submerged macrophyte Vallisneria spiralis exposed to low concentrations of cadmium. Environ Toxicol 24:271–278

    CAS  Article  Google Scholar 

  53. Wei S, da Silva JAT, Zhou Q (2008) Agro-improving method of phytoextracting heavy metal contaminated soil. J Hazard Mater 150:662–668

    CAS  Article  Google Scholar 

  54. Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Sci 76:167–179

    CAS  Google Scholar 

  55. Yang XE, Long XX, Ye HB, He ZL, Calvert DV, Stoffella PG (2005) Cadmium tolerance and hyperaccumulation in a new Zn hyper accumulating plant species (Sedum alfredii Hance). Plant Soil 259:181–189

    Article  Google Scholar 

  56. Yoon J, Cao XD, Zhou QX, Ma LQ (2006) Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ 368:456–464

    CAS  Article  Google Scholar 

  57. Zhang J, Kirkham MB (1994) Drought-stress-induced changes in activities of superoxide dismutase, catalase, and peroxidase in wheat species. Plant Cell Physiol 35:785–791

    CAS  Google Scholar 

  58. Zhang H, Li YH, Hu LY, Wang SH, Zhang FQ, Hu KD (2008) Effects of exogenous nitric oxide donor on antioxidant metabolism in wheat leaves under aluminum stress. Russ J Plant Physiol 55:469–474

    CAS  Article  Google Scholar 

  59. Zhang FQ, Zhang HX, Wang GP, Xu LL, Shen ZG (2009) Cadmium-induced accumulation of hydrogen peroxide in the leaf apoplast of Phaseolus aureus and Vicia sativa and the roles of different antioxidant enzymes. J Hazard Mater 168:76–84

    CAS  Article  Google Scholar 

  60. Zhuang P, Yang QW, Wang HB, Shu WS (2007) Phytoextraction of heavy metals by eight plant species in the field water, air, and soil pollution. Int J Environ Pollut 12:234–324

    Article  Google Scholar 

Download references

Acknowledgments

This study is the part of M.Phil. Environmental Sciences Thesis of Mujahid Farid. We are highly thankful to the Higher Education Commission (HEC), Pakistan, and Government College University, Faisalabad, Pakistan, for their financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Ali.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Farid, M., Ali, S., Ishaque, W. et al. Exogenous application of ethylenediamminetetraacetic acid enhanced phytoremediation of cadmium by Brassica napus L.. Int. J. Environ. Sci. Technol. 12, 3981–3992 (2015). https://doi.org/10.1007/s13762-015-0831-0

Download citation

Keywords

  • Antioxidant enzymes
  • Cadmium
  • Chelator
  • EDTA
  • Growth
  • Remediation