Skip to main content

Advertisement

Log in

Catalytic behavior and synergistic effect of nonthermal plasma and CuO/AC catalyst for benzene destruction

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Nonthermal plasma-catalysis hybrid technology (NTP-C) operated at ambient temperature and pressure offers an innovative and effective approach to solving the problem of dilute volatile organic compounds pollution. Herein, the destruction of benzene (50–450 ppm) over an in-plasma NTP-C composite system was investigated. The AO x /active carbon (AO x /AC), AO x /3A molecular sieve (AO x /MS), and AO x /γ-Al2O3 (A = Fe, Ag, Zn, Mn, and Cu) catalysts were prepared by the incipient-wetness impregnation method. The destruction performances of NTP alone and NTP-C are compared under different reaction conditions, such as inlet reactant concentration, catalyst type, and energy density. AC exhibits the best benzene removal efficiency among three catalyst supports, and the performances of AO x /AC under different conditions follow the trend of CuO/AC > MnO/AC > MnO2/AC > Fe2O3/AC > AC > ZnO/AC > Ag2O/AC. The NTP with CuO/AC system exhibits the highest benzene elimination capability with almost 90.6 % inlet benzene removed at energy density of 70 and 270 J L−1. The strong adsorption ability of AC and the optimal catalytic ability of crystalline structure of CuO on the AC support may be contributed to the excellent performance of CuO/AC. It is found that the NO x by-product also can be well controlled over NTP-CuO/AC system. Additionally, the surface of CuO/AC is more slipperier and homogeneous with the reaction proceeding, indicating higher stability of CuO/AC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Avgouropoulos G, Ioannides T (2003) Selective CO oxidation over CuO–CeO2 catalysts prepared via the urea-nitrate combustion method. Appl Catal A 244:155–167

    Article  CAS  Google Scholar 

  • Chae JO, Demidiouk V, Yeulash M, Choi IC, Jung TG (2004) Experimental study for indoor air control by plasma-catalyst hybrid system. IEEE Trans Plasma Sci 32:493–497

    Article  CAS  Google Scholar 

  • Chen HL, Lee HM, Chen SH, Chang MB, Yu SJ, Li SN (2009) Removal of volatile organic compounds by single-stage and two-stage plasma catalysis systems: a review of the performance enhancement mechanisms, current status, and suitable applications. Environ Sci Technol 43:2216–2227

    Article  CAS  Google Scholar 

  • Corella J, Toledo JM, Padilla AM (2000) On the selection of the catalyst among the commercial platinum-based ones for total oxidation of some chlorinated hydrocarbons. Appl Catal B 27:243–256

    Article  CAS  Google Scholar 

  • Dai QG, Wang XY, Lu GZ (2008) Low-temperature catalytic combustion of trichloroethylene over cerium oxide and catalyst deactivation. Appl Catal B 81:192–202

    Article  CAS  Google Scholar 

  • Delagrange S, Pinard L, Tatibouet JM (2006) Combination of a non-thermal plasma and a catalyst for toluene removal from air: manganese based oxide catalysts. Appl Catal B 68:92–98

    Article  CAS  Google Scholar 

  • do Nascimento GE, Duarte MMMB, Campos NF, da Rocha ORS, da Silva VL (2014) Adsorption of azo dyes using peanut hull and orange peel: a comparative study. Environ Technol 35:1436–1453

    Article  Google Scholar 

  • Durme JV, Dewulf J, Leys C, Langenhove HV (2008) Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment: a review. Appl Catal B 78:324–333

    Article  Google Scholar 

  • Fan X, Zhu T, Wang M, Li X (2009) Removal of low-concentration BTX in air using a combined plasma catalysis system. Chemosphere 75:1301–1306

    Article  CAS  Google Scholar 

  • Gerasimov G (2007) Modeling study of electron-beam polycyclic and nitropolycyclic aromatic hydrocarbons treatment. Radiat Phys Chem 76:27–36

    Article  CAS  Google Scholar 

  • Guo YF, Liao XB, He JH, Qu WJ, Ye DQ (2010) Effect of manganese oxide catalyst on the dielectric barrier discharge decomposition of toluene. Catal Today 153:176–183

    Article  CAS  Google Scholar 

  • Harling AM, Glover D, Whitehead JC, Zhang K (2008) Novel method for enhancing the destruction of environmental pollutants by the combination of multiple plasma discharges. Environ Sci Technol 42:4546–4550

    Article  CAS  Google Scholar 

  • Hensel K, Katsura S, Mizuno A (2005) DC microdischarges inside porousceramics. IEEE Trans Plasma Sci 33:574–575

    Article  CAS  Google Scholar 

  • Holzer F, Kopinke FD, Roland U (2005) Influence of ferroelectric material and catalysts on the performance of non-thermal plasma (NTP) for the removal of air pollutants. Plasma Chem Plasma Process 25:595–611

    Article  CAS  Google Scholar 

  • Jones AP (1999) Indoor air quality and health. Atmos Environ 33:4535–4564

    Article  CAS  Google Scholar 

  • Karuppiah J, Reddy EL, Reddy PMK, Ramaraju B, Subrahmanyam C (2014) Catalytic nonthermal plasma reactor for the abatement of low concentrations of benzene. Int J Environ Sci Technol 11:311–318

    Article  CAS  Google Scholar 

  • Karuppiaha J, Reddya EL, Reddya PMK, Ramarajua B, Karvembub R, Subrahmanyama C (2012) Abatement of mixture of volatile organic compounds (VOCs) in a catalytic non-thermal plasma reactor. J Hazard Mater 237–238:283–289

    Article  Google Scholar 

  • Kim HH, Oh SM, Ogata A, Futamura S (2004) Decomposition of benzene using Ag/TiO2 packed plasma-driven catalyst reactor: influence of electrode configuration and Ag-loading amount. Catal Lett 96:189–194

    Article  CAS  Google Scholar 

  • Kim HH, Ogata A, Futamura S (2005a) Atmospheric plasma-driven catalysis for the low temperature decomposition of dilute aromatic compounds. J Phys D Appl Phys 38:1292–1300

    Article  CAS  Google Scholar 

  • Kim HH, Oh SM, Ogata A, Futamura S (2005b) Decomposition of gas-phase benzene using plasma-driven catalyst (PDC) reactor packed with Ag/TiO2 catalyst. Appl Catal B 56:213–220

    Article  CAS  Google Scholar 

  • Kim HH, Ogata A, Futamura S (2008) Oxygen partial pressure-dependent behavior of various catalysts for the total oxidation of VOCs using cycled system of adsorption and oxygen plasma. Appl Catal B 79:356–367

    Article  CAS  Google Scholar 

  • Magureanu M, Mandache NB, Parvulescu VI, Subrahmanyam C, Renken A, Kiwi-Minsker L (2007) Improved performance of non-thermal plasma reactor during decomposition of trichloroethylene: optimization of the reactor geometry and introduction of catalytic electrode. Appl Catal B 74:270–277

    Article  CAS  Google Scholar 

  • Muzzarelli RAA, Pariser ER (eds) (1978) Proceedings of the first international conference on chitin/chitosan. MIT Sea Grant Program, Massachusetts Institute of Technology

  • Roland U, Holzer F, Kopinke ED (2005) Combination of non-thermal plasma and heterogeneous catalysis for oxidation of volatile organic compounds Part 2. Ozone decomposition and deactivation of gamma-Al2O3. Appl Catal B 58:217–226

    Article  CAS  Google Scholar 

  • Rousseau A, Guaitella O, Ropcke J, Gatilova LV, Tolmachev YA (2004) Combination of a pulsed microwave plasma with a catalyst for acetylene oxidation. Appl Phys Lett 85:2199–2201

    Article  CAS  Google Scholar 

  • Sano T, Negishi N, Sakai E, Matsuzawa S (2006) Contributions of photocatalytic/catalytic activities of TiO2 and Al2O3 in nonthermal plasma on oxidation of acetaldehyde and CO. J Mol Catal A: Chem 245:235–241

    Article  CAS  Google Scholar 

  • Simo M, Sivashanmugam S, Brown CJ, Hlavacek V (2009) Adsorption/desorption of water and ethanol on 3A zeolite in near-adiabatic fixed bed. Ind Eng Chem Res 48:9247–9260

    Article  CAS  Google Scholar 

  • Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603–619

    Article  CAS  Google Scholar 

  • Subrahmanyam Ch, Magureanu M, Renken A, Kiwi-Minsker L (2006) Catalytic abatement of volatile organic compounds assisted by non-thermal plasma: part 1. A novel dielectric barrier discharge reactor containing catalytic electrode. Appl Catal B 65:150–156

    Article  CAS  Google Scholar 

  • Vandenbroucke AM, Morent R, Geyter ND, Leys C (2011) Non-thermal plasmas for non-catalytic and catalytic VOC abatement. J Hazard Mater 195:30–54

    Article  CAS  Google Scholar 

  • Wallis AE, Whitehead JC, Zhang K (2007) The removal of dichloromethane from atmospheric pressure air streams using plasma-assisted catalysis. Appl Catal B 72:282–288

    Article  CAS  Google Scholar 

  • Zhu T, Li J, Jin YQ, Liang YH, Ma GD (2009) Gaseous phase benzene decomposition by non-thermal plasma coupled with nano titania catalyst. Int J Environ Sci Technol 6:141–148

    Article  CAS  Google Scholar 

  • Zhu T, Wan YD, Li J, He XW, Xu DY, Shu XQ, Liang WJ, Jin YQ (2011) Volatile organic compounds decomposition using nonthermal plasma coupled with a combination of catalysts. Int J Environ Sci Technol 8:621–630

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the National Natural Science Foundation (21477095, 21403210, 21107106), the Postdoctoral Science Foundation of China (2014M550498), and the Shannxi Postdoctoral Science Foundation. The authors are also grateful to the reviewers and the editor for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. He.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 338 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, C., Cao, L., Liu, X. et al. Catalytic behavior and synergistic effect of nonthermal plasma and CuO/AC catalyst for benzene destruction. Int. J. Environ. Sci. Technol. 12, 3531–3540 (2015). https://doi.org/10.1007/s13762-015-0765-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-015-0765-6

Keywords

Navigation