Skip to main content
Log in

Manganese dioxide nanoparticles-silver-Y zeolite as a nanocomposite catalyst for the decontamination reactions of OS-diethyl methyl phosphonothiolate

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

The decontamination reactions of O,S-diethyl methyl phosphonothiolate, as an agricultural organo-phosphorous pesticide onto 20 wt% loaded manganese dioxide nanoparticles-silver-Y zeolite as a nanocomposite catalyst in different solvents, were evaluated and monitored by means of gas chromatography–flame ionization detector and gas chromatography–mass spectrometry. Prior to the reaction, the catalyst was synthesized in three steps: at first, sodium-Y zeolite was prepared by hydrothermal method; then, silver-Y zeolite was prepared from sodium-Y zeolite using ion exchange procedure; and finally, manganese dioxide nanoparticles were synthesized by in situ impregnation method by pouring the pre-prepared silver-Y zeolite into manganese(ΙΙ) nitrate solution and loaded as 20 wt% onto silver-Y zeolite structure. The formation of the synthesized units and final nanocomposite catalyst was verified through scanning electron microscopy, X-ray diffraction, atomic absorption spectrometry and Fourier transform-infrared spectroscopy techniques. Gas chromatography chromatograms showed that O,S-diethyl methyl phosphonothiolate was decontaminated perfectly by the catalyst in n-heptane solvent after 8 h, at room temperature, while chloroform and isopropanol solvents and other reaction times gave lower decontamination results. Moreover, gas chromatography–mass spectrometry chromatograms confirmed the formation of ethyl methyl phosphonic acid as a major and final product, which exemplifies the role of hydrolysis reaction during the degradation progress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2

Similar content being viewed by others

References

  • Al-Qurainy F, Abdel-Megeed A (2009) Phytoremediation and detoxification of two organophosphorous pesticides residues in Riyadh area. World Appl Sci J 6:987–998

    CAS  Google Scholar 

  • Auerbach SM, Carrado KA, Dutta PK (2003) Handbook of zeolite science and technology. Marcel Dekker Inc., New York

    Book  Google Scholar 

  • Bagheri H, Ayazi Z, Aghakhani A, Alipour N (2012) Polypyrrole/polyamide electrospun-based sorbent for microextraction in packed syringe of organophosphorous pesticides from aquatic samples. J Sep Sci 35:114–120

    Article  CAS  Google Scholar 

  • Barata C, Solayan A, Porte C (2004) Role of B-esterases in assessing toxicity of organophosphorus (chlorpyrifos, malathion) and carbamate (carbofuran) pesticides to Daphnia magna. Aquat Toxicol 66:125–139

    Article  CAS  Google Scholar 

  • Barlocher CH, Meier WM, Olson DH (2001) Atlas of zeolite framework types, Rev edn. Elsevier, Amsterdam

    Google Scholar 

  • Bartram PW, Wagner GW (2003) Decontamination method for toxic chemical agents. US Patent, No 6, 537, 382

  • Cao H, Suib SL (1994) Highly efficient heterogeneous photooxidation of 2-propanol to acetone with amorphous manganese oxide catalysts. J Am Chem Soc 116:5334–5342

    Article  CAS  Google Scholar 

  • Chen D, Wang J, Xu Y, Li D (2012) A pure shear mode ZnO film resonator for the detection of organophosphorous pesticides. Sens Actuators B 171–172:1081–1086

    Article  Google Scholar 

  • Diurak L, Kazanicif M (2001) Effect of some organophosphorus insecticides on soil microorganisms. Turk J Biol 25:51–58

    Google Scholar 

  • Elzey S, Mubayib A, Larsen SC, Grassian VH (2008) FTIR study of the selective catalytic reduction of NO2 with ammonia on nanocrystalline NaY and CuY. J Mol Catal A: Chem 285:48–57

    Article  CAS  Google Scholar 

  • Feeley JS, Sachtler WMH (1991) Enhanced reductibility of Ni and Ni + Pd in zeolite Y: blocking of small cages with Ca2+ or Mg2+ ions. Catal Lett 9:377–386

    Article  CAS  Google Scholar 

  • Gupta VK, Nayak A (2012) Cadmium removal and recovery from aqueous solutions by novel adsorbents prepared from orange peel and Fe2O3 nanoparticles. Chem Eng J 180:81–90

    Article  CAS  Google Scholar 

  • Gupta VK, Jain R, Malathi S, Nayak A (2010a) Adsorption–desorption studies of indigocarmine from industrial effluents by using deoiled mustard and its comparison with charcoal. J Colloid Interface Sci 348:628–633

    Article  CAS  Google Scholar 

  • Gupta VK, Rastogi A, Nayak A (2010b) Adsorption studies on the removal of hexavalent chromium from aqueous solution using a low cost fertilizer industry waste material. J Colloid Interface Sci 342:135–141

    Article  CAS  Google Scholar 

  • Gupta VK, Jain R, Nayak A, Agarwal A, Shrivastava M (2011) Removal of the hazardous dye—tartrazine by photodegradation on titanium dioxide surface. Mater Sci Eng C 31:1062–1067

    Article  CAS  Google Scholar 

  • Gupta VK, Kumar R, Nayak A, Saleh TA, Barakat MA (2013) Adsorptive removal of dyes from aqueous solution onto carbon nanotubes: a review. Adv Colloid Interface Sci 193–194:24–34

    Article  Google Scholar 

  • Howard PH, Sage GW, Jarvis WF, Gray DA (1990) Handbook of environmental fate and exposure data for organic chemicals, vol 4. Lewis Publishers Inc, Chelsea, p 578

    Google Scholar 

  • Huang YY (1974) Adsorption in AgX and AgY zeolites by carbon monoxide and other simple molecules. J Catal 32:482–491

    Article  CAS  Google Scholar 

  • Jentys A, Lercher JA (2001) Characterization of zeolites. In: van Bekkum H, Flanigen EM, Jacobs PA, Jensen JC (eds) Introduction to zeolite science and practice. Elsevier, Amsterdam, p 345

    Chapter  Google Scholar 

  • Jiao F, Frei H (2010) Nanostructured cobalt and manganese oxide clusters as efficient wateroxidation catalysts. Energy Environ Sci 3:1018–1027

  • Kanan SM, Tripp CP (2001) An infrared study of adsorbed organophosphonates on silica: a prefiltering strategy for the detection of nerve agents on metal oxide sensors. Langmuir 17:2213–2218

    Article  CAS  Google Scholar 

  • Khajeh M, Laurent S, Dastafkan K (2013) Nanoadsorbents: classification, preparation, and applications (with emphasis on aqueous media). Chem Rev 113:7728–7768

    Article  CAS  Google Scholar 

  • Khatamian M, Alaji Z, Khandar AA (2011) Synthesis and characterization of polycrystalline ZnO/HZSM-5 nanocomposites. J Iran Chem Soc 8:44–54

    Article  Google Scholar 

  • Kim SO, Park ED, Ko EY (2006) Zeolite and sorbent for desurfurization and method of preparing the same. US Patent, No 016, 25, 57, A1

  • Koivula R, Pakarinen J, Sivenius M, Sirola K, Harjula R, Paatero E (2009) Use of hydrometallurgical wastewater as a precursor for the synthesis of cryptomelane-type manganese dioxide ion exchange material. Sep Purif Technol 70:53–57  

  • Knagge K, Johnson M, Grassian VH, Larsen SC (2006) Adsorption and thermal reaction of DMMP in nanocrystalline NaY. Langmuir 22:11077–11084

    Article  CAS  Google Scholar 

  • Li Q, Wang X, Yuan D (2009) Solid-phase extraction of polar organophosphorous pesticides from aqueous samples with oxidized carbon nanotubes. J Environ Monit 11:439–444

    Article  CAS  Google Scholar 

  • Liu R, Liua H, Qiang Z, Qu J, Li G, Wang D (2009) Effects of calcium ions on surface characteristics and adsorptive properties of hydrous manganese dioxide. J Colloid Interface Sci 331:275–228

  • Mahato TH, Prasad GK, Singh B, Batra K, Ganesan K (2010) Mesoporous manganese oxide nanobelts for decontamination of sarin, sulfur mustard and chloro ethyl ethyl sulfide. Microporous Mesoporous Mater 132:15–21

    Article  CAS  Google Scholar 

  • Mahato TH, Singh B, Srivastava AK, Prasad GK, Srivastava AR, Ganesan K, Vijayaraghavan R (2011) Effect of calcinations temperature of CuO nanoparticle on the kinetics of decontamination and decontamination products of sulphur mustard. J Hazard Mater 192:1890–1895

    Article  CAS  Google Scholar 

  • Meng Q, Doetschman DC, Rizos AK, Lee MH, Schulte JT, Spyros A, Kanyi CW (2011) Adsorption of organophosphates into microporous and mesoporous NaX zeolites and subsequent chemistry. Environ Sci Technol 453:3000–3005

    Article  Google Scholar 

  • Mitchell MB, Sheinker VN, Tesfamichae ENG, Nunley M (2003) Decomposition of dimethyl methylphosphonate (DMMP) on supported cerium and iron co-impregnated oxides at room temperature. J Phys Chem B 107:580–586

    Article  CAS  Google Scholar 

  • Moussavi G, Hosseini H, Alahabadi A (2013) The investigation of diazinon pesticide removal from contaminated water by adsorption onto NH4Cl-induced activated carbon. Chem Eng J 214:172–179

    Article  CAS  Google Scholar 

  • Munro NB, Talmage SS, Griffin GD, Waters LC, Watson AP, King JF, Hauschild V (1999) The sources, fate, and toxicity of chemical warfare agent degradation products. Environ Health Perspect 107:933–974

    Article  CAS  Google Scholar 

  • Oliveira MLM, Miranda AAL, Barbosa CMBM, Cavalcante CL Jr, Azevedo DCS, Rodriguez-Castellon E (2009) Adsorption of thiophene and toluene on NaY zeolites exchanged with Ag(I), Ni(II) and Zn(II). Fuel 88:1885–1892

    Article  CAS  Google Scholar 

  • Padron-Sanz C, Halko R, Sosa-Ferrera Z, Santana-Rodryguez JJ (2005) Combination of microwave assisted micellar extraction and liquid chromatography for the determination of organophosphorous pesticides in soil samples. J Chromatogr A 1078:13–21

    Article  CAS  Google Scholar 

  • Patterson A (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 56:978–982

    Article  CAS  Google Scholar 

  • Patterson HH (2006) Development of a rapid decontamination system for nerve agents. US Army Research, NC OMB, No 0704–0188

  • Paukku Y, Michalkova A, Leszczynski J (2008) Adsorption of dimethyl methylphosphonate and trimethylphosphate on calcium oxide: an ab initio study. Struct Chem 19:307–320

    Article  CAS  Google Scholar 

  • Prasad GK (2010) Decontamination of 2-chloro ethyl phenyl sulfide using mixed metal oxide nanocrystals. J Sci Ind Res 69:835–840

    CAS  Google Scholar 

  • Prasad GK, Singh B, Ganesan K, Batra A, Kumeria T, Gutch PK, Vijayaraghavan R (2009) Modified titania nanotubes for decontamination of sulfur mustard. J Hazard Mater 167:1192–1197

    Article  CAS  Google Scholar 

  • Prasad GK, Ramacharyulu PVRK, Singh B (2011) Nanomaterial based decontaminates against chemical warfare agents. J Sci Ind Res 70:91–104

    CAS  Google Scholar 

  • Qi F, Hirofumi K, Kenta O (1999) Manganese oxide porous crystals. J Mater Chem 9:319–333

    Article  Google Scholar 

  • Qi R, Wang Y, Chen J, Li J, Zhu S (2007) Removing thiophenes from n-octane using PDMS–AgY zeolite mixed matrix membranes. J Membr Sci 295:114–120

    Article  CAS  Google Scholar 

  • Rasouli M, Yaghobi N, Chitsazan S, Sayyar MH (2012a) Adsorptive separation of meta-xylene from C8 aromatics. Microporous Mesoporous Mater 90:1407–1415

    CAS  Google Scholar 

  • Rasouli M, Yaghobi N, Chitsazan S, Sayyar MH (2012b) Effect of nanocrystalline zeolite Na-Y on meta-xylene separation. Microporous Mesoporous Mater 152:141–147

    Article  CAS  Google Scholar 

  • Richter M, Berndt H, Eckelt R, Schneider M, Fricke R (1999) Zeolite-mediated removal of NOx by NH3 from exhaust streams at low temperature. Catal Today 54:531–545

    Article  CAS  Google Scholar 

  • Richter M, Trunschke A, Bentrup U, Brzezinka KW, Schreier E, Schneider M, Pohl MM, Fricke R (2002) Selective catalytic reduction of nitric oxide by ammonia over egg-shell MnO x /Na-Y composite catalysts. J Catal 206:98–113

    Article  CAS  Google Scholar 

  • Rusu CN, Yates JT (2000) Adsorption and decomposition of dimethyl methylphosphonate on TiO2. J Phys Chem B 104:12992–12998

    Google Scholar 

  • Sambur JB, Doetschman DC, Yang SW, Schulte JT, Jones BR, DeCoste JB (2008) Multiple effects of the presence of water on the nucleophilic substitution reactions of NaX Faujasite zeolite with dimethyl methylphosphonate (DMMP). Microporous Mesoporous Mater 112:116–124

    Article  CAS  Google Scholar 

  • Seidel A, Kampf G, Schmidt A, Boddenberg B (1998) Zeolite ZnY catalysts prepared by solid-state ion exchange. Catal Lett 51:213–218

    Article  CAS  Google Scholar 

  • Shen YF, Zerger RP, DeGuzman RN, Suib SL, McCurdy L, Potter DI, O’Young CL (1993) Manganese oxide octahedral molecular sieves: preparation, characterization, and applications. Science 23:511–515

    Article  Google Scholar 

  • Shen HY, Zhu Y, Wen XE, Zhuang YM (2007) Preparation of Fe3O4-C18 nano-magnetic composite materials and their cleanup properties for organophosphorous pesticides. Anal Bioanal Chem 387:2227–2237

    Article  CAS  Google Scholar 

  • Singh R, Gutch PK, Acharya J, Prabha S (2011) Detoxification of O,S-diethyl methylphosphonothiolate (OSDEMP), a simulant of VX, by N,N-dichlorourethane an effective decontamination agent. Indian J Chem B 50:1504–1509

    Google Scholar 

  • Stout SC, Larsen SC, Grassian VH (2007) Adsorption, desorption and thermal oxidation of 2-CEES on nanocrystalline zeolites. Microporous Mesoporous Mater 100:77–86

    Article  CAS  Google Scholar 

  • Tang H, Cheng Z, Zhu H, Zuo G, Zhang M (2008) Effect of acid and base sites on the degradation of sulfur mustard over several typical oxides. Appl Catal B 79:323–333

    Article  CAS  Google Scholar 

  • Tomašević A, Kiss E, Petrović S, Mijin D (2010) Study on the photocatalytic degradation of insecticide methomyl in water. Desalination 262:228–234

    Article  Google Scholar 

  • Trouve A, Batonneau-Gener I, Valange S, Bonne M, Mignard S (2012) Tuning the hydrophobicity of mesoporous silica materials for the adsorption of organic pollutant in aqueous solution. J Hazard Mater 201–202:107–114

    Article  Google Scholar 

  • Wagner GW, Bartram PW (1999) Reactions of VX, HD, and their simulants with Na-Y and Ag-Y zeolites desulfurization of VX on Ag-Y. Langmuir 15:8113–8118

    Article  CAS  Google Scholar 

  • Wagner GW, Bartram PW, Koper O, Klabunde KJ (1999) Reactions of VX, GD, and HD with nanosize MgO. J Phys Chem B 103:3225–3228

    Article  CAS  Google Scholar 

  • Wagner GW, Koper OB, Lucas E, Decker S, Klabunde KJ (2000) Reactions of VC, GC, and HD with nanosize CaO: autocatalytic dehydrohalogenation of HD. J Phys Chem B 107:5118–5123

    Article  Google Scholar 

  • Wagner GW, Porcell LR, O’Connor RJ, Munavalli S, Carnes CL, Kapoor PN, Klabunde KJ (2001) Reactions of VX, GB, GD, and HD with nanosize Al2O3. Formation of aluminophosphonates. J Am Chem Soc 123:1636–1644

    Article  CAS  Google Scholar 

  • Wang AJ, Zhang PP, Li YF, Feng JJ, Dong WJ, Liu XY (2011) Hydrogen peroxide sensor based on glassy carbon electrode modified with β-manganese dioxide nanorods. Microchim Acta 175:31–37

  • Wong CT, Abdullah AZ, Bhatia S (2008) Catalytic oxidation of butyl acetate over silver-loaded zeolites. J Hazard Mater 157:480–489

    Article  CAS  Google Scholar 

  • Yan W, Kim JY, Xing W, Donavan KC, Ayvazian T, Penner RM (2012) Lithographically patterned gold/manganese dioxide core/shell nanowires for high capacity, high rate, and high cyclability hybrid electrical energy storage. Chem Mater 24:2382–2390

  • Yang YC, Bake JA, Ward JR (1992) Decontamination of chemical warfare agents. Chem Rev 92:1729–1743

    Article  CAS  Google Scholar 

  • Yang SW, Doetschman DC, Schulte JT, Sambur JB, Kanyi CW, Fox JD, Kowenje CO, Jones BR, Sherma ND (2006) Sodium X-type faujasite zeolite decomposition of dimethyl methylphosphonate (DMMP) to methylphosphonate: nucleophilic zeolite reactions I. Microporous Mesoporous Mater 92:56–60

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Young Researchers and Elite Club, Ahvaz and Karaj branches.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Dastafkan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dastafkan, K., Sadeghi, M. & Obeydavi, A. Manganese dioxide nanoparticles-silver-Y zeolite as a nanocomposite catalyst for the decontamination reactions of OS-diethyl methyl phosphonothiolate. Int. J. Environ. Sci. Technol. 12, 905–918 (2015). https://doi.org/10.1007/s13762-014-0701-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-014-0701-1

Keywords

Navigation