Skip to main content
Log in

Assessment of mercury heavy metal toxicity-induced physiochemical and molecular changes in Sesbania grandiflora L.

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Mercury (Hg) is one of the major toxic heavy metals because it bioaccumulates and biomagnifies in animal and human bodies via the food chain. To eliminate heavy metal contamination, plants are being used as removal agents of pollutants/toxic chemicals from the environment. The present study was mainly focused on elucidating the potential phytotoxic effects of Hg heavy metal ion exposure on Sesbania grandiflora seedlings. Growth of seedlings was significantly affected (56 %) at 60 mg L−1 Hg concentration. The level of chlorophyll pigment contents was increased in Hg-treated plants compared to the control. Malondialdehyde content and antioxidative enzyme activities were found to be significantly increased by increasing the concentration of Hg exposure up to 40 mg L−1 while slightly decreased at higher doses. The DNA alterations appearing in the random amplified polymorphic DNA (RAPD) profiles of leaf and root tissues following Hg heavy metal exposure included the disappearance of normal DNA bands and the appearance of new bands compared to the untreated controls. This result strongly indicated that genomic template stability was significantly affected by Hg-induced stress in S. grandiflora seedlings. It is concluded that DNA polymorphisms detected by RAPD fingerprinting analysis could be used as potential molecular markers for the evaluation of Hg heavy metal ion-induced genotoxic effects in other plant species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmad MA, Guar R, Gupta M (2012) Comparative biochemical and RAPD analysis in two varieties of rice (Oryza sativa) under arsenic stress by using various biomarkers. J Hazard Mater 217–218:141–148

    Article  Google Scholar 

  • Aksakal O, Erturk FA, Sunar S, Bozari S, Agar G (2013) Assessment of genotoxic effects of 2,4-dichlorophenoxyacetic acid on maize by using RAPD analysis. Ind Crops Prod 42:552–557

    Article  CAS  Google Scholar 

  • Alscher RG, Erturk NL (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. Environ Exp Bot 53:1331–1341

    Article  CAS  Google Scholar 

  • Atienzar FA, Jha AN (2004) The random amplified polymorphic DNA (RAPD) assay to determine DNA alterations, repair and transgenerational effects in B(a)P exposed Daphnia magna. Mutat Res 552:125–140

    Article  CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  CAS  Google Scholar 

  • Beer JRF, Sizer IW (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195:133–140

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Cenkci S, Yildiz M, Cigerci IH, Konuk M, Bozdag A (2009) Toxic chemicals-induced genotoxicity detected by random amplified polymorphic DNA (RAPD) in bean (Phaseolus vulgaris L.) seedlings. Chemosphere 76:900–906

    Article  CAS  Google Scholar 

  • Cenkci S, Cigerci IH, Yildiz M, Ozay C, Bozdag A (2010) Lead contamination reduces chlorophyll and genomic template stability in Brassica napa L. Environ Exp Bot 67:467–473

    Article  CAS  Google Scholar 

  • Chen J, Shiyab S, Han FX, Monts DL, Waggoner AW, Su ZY (2009) Bioaccumulation and physiological effects of mercury in Pteris vittata and Nephrolepis exaltata. Ecotoxicology 18:110–121

    Article  CAS  Google Scholar 

  • Conceição FT, Navarro GRB, Silva AM (2013) Anthropogenic influences on Cd, Cr, Cu, Ni, Pb and Zn concentrations in soils and sediments in a watershed with sugar cane crops at São Paulo State, Brazil. Int J Environ Res 7(3):551–560

    Google Scholar 

  • Davenport SB, Gallego SM, Benavides MP, Tomarow ML (2003) Behaviour of antioxidant defense system in the adaptive response to salt stress in Helianthus annus L. J Plant Growth Regul 40:81–88

    Article  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Feng-tao LI, Jian-min QI, Gao-yang Z, Li-hui L, Ping-ping F, Fen TA, Jian-tang XU (2013) Effect of cadmium stress on the growth, antioxidative enzymes and lipid peroxidation in two kenaf (Hibiscus cannabinus L.) plant seedlings. J Int Agri 12:610–620

    Article  Google Scholar 

  • Gallego S, Benavides M, Tomarow A (2002) Involvement of an antioxidant defense system in the adaptive response to heavy metal ions in Helianthus annus L. cells. Plant Growth Regul 36:267–273

    Article  CAS  Google Scholar 

  • Gao S, Yang C, Tang L, Zhu J, Xu Y, Wang S, Chen F (2010) Growth and antioxidant responses in Jatropha curcas seedling exposed to mercury toxicity. J Hazard Mater 182:591–597

    Article  CAS  Google Scholar 

  • Hagger JA, Atienzar FA, Jha AN (2006) Genotoxic, cytotoxic, developmental and survival effects of tritiated water in the early life stages of the marine mollusc, Mytilus edulis. Aquatic Toxicol 74:205–217

    Article  Google Scholar 

  • Hoagland R, Arnon DI (1950) The water-culture method of growing plants without soil. Calif Agric Exp Station Circ 347:1–32

    Google Scholar 

  • Hou W, Chen X, Song G, Wang Q, Chang CC (2007) Effects of copper and cadmium on heavy metal polluted water body restoration by duckweed (Lemna minor). Plant Physiol Biochem 45:62–69

    Article  CAS  Google Scholar 

  • Hu R, Sunc K, Suc X, Pana Y, Zhang Y (2012) Physiological responses and tolerance mechanisms to Pb in two xerophils: Salsola passerina Bunge and Chenopodium album L. J Hazard Mater 205–206:131–138

    Article  Google Scholar 

  • Israr M, Sahi SV (2006) Antioxidative responses to mercury in the cell cultures of Sesbania drummondii. Plant Physiol Biochem 44:590–595

    Article  CAS  Google Scholar 

  • Korpe DA, Aras S (2011) Evaluation of copper-induced stress on eggplant (Solanum melongena L.) seedlings at the molecular and population levels by use of various biomarkers. Mutat Res 719:29–34

    Article  Google Scholar 

  • Li B, Shi JB, Wang X, Meng M, Huang L, Qi XL, He B, Ye ZH (2013) Variations and constancy of mercury and methylmercury accumulation in rice grown at contaminated paddy field sites in three Provinces of China. Environ Pollut 181:91–97

    Article  CAS  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Liu W, Yang YS, Li PJ, Zhou QX, Xie LJ, Han YP (2009) Risk assessment of cadmium-contaminated soil on plant DNA damage using RAPD and physiological indices. J Hazard Mater 161:878–883

    Article  CAS  Google Scholar 

  • Lomonte C, Sgherri C, Baker JM, Kolev SD, Navari-Izzo F (2010) Antioxidative responses of Atriplex codonocarpa to mercury. Environ Exp Bot 69:9–16

    Article  CAS  Google Scholar 

  • Malecka A, Piochalak A, Tomaszewska B (2009) Reactive oxygen species production and antioxidative defense system in pea root tissues treated with lead ions: the whole roots level. Acta Physiol Plant 31:1053–1063

    Article  CAS  Google Scholar 

  • Manikandan R, Venkatachalam P (2011) Risk assessment of mercury ion heavy metal exposure on physiological and biochemical changes and DNA damage using RAPD analysis in Mentha arvensis seedlings. Plant Cell Biotech Mol Biol 12:41–50

    CAS  Google Scholar 

  • Marchiol L, Assolari S, Sacro P, Zerbia A (2004) Phytoremediation of heavy metals by Canola (Brassica napus) and radish (Raplanus sativus) grown on multi contaminated soil. Environ Pollut 132:21–27

    Article  CAS  Google Scholar 

  • Meng B, Feng X, Qiu G, Cai Y, Wang D (2010) Distribution patterns of inorganic mercury and methylmercury in tissues of rice (Oryza sativa L.) plants and possible bioaccumulation pathways. J Agric Food Chem 58:4951–4958

    Article  CAS  Google Scholar 

  • Mishra S, Srivastava S, Tripathi RD, Govindarajan R, Kuriakose SV, Prasad MNV (2006) Phytochelation synthesis and responses of antioxidants during cadmium stress in Bacopa monnieri L. Plant Physiol Biochem 44:25–37

    Article  CAS  Google Scholar 

  • Moaref S, Sekhavatjou MS, Hosseini Alhashemi A (2014) Determination of trace elements concentration in wet and dry atmospheric deposition and surface soil in the largest industrial city, Southwest of Iran. Int J Environ Res 8(2):335–346

    CAS  Google Scholar 

  • Nakano Y, Asada K (1987) Purification of ascorbate peroxidase in spinach chloroplasts: its inactivation in ascorbate depleted medium and reactivation by monodehydroascorbate radical. Plant Cell Physiol 28:131–140

    CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  Google Scholar 

  • Parlak KC, Yilmaz DD (2013) Ecophysiological tolerance of Lemna gibba L. exposed to cadmium. Ecotoxicol Environ Saf 91:79–85

    Article  Google Scholar 

  • Pilon-Smits E, Pilon M (2000) Breeding mercury-breathing plants for environmental cleanup. Trends Plant Sci 5:235–236

    Article  CAS  Google Scholar 

  • Quintela-Sabaris C, Kidd PS, Fraga MI (2005) Identification of metalliferous ecotypes of Cistus ladanifer L. using RAPD markers. Z Naturforsch 60:229–235

    CAS  Google Scholar 

  • Radotic K, Ducic T, Mutavdzic D (2000) Changes in peroxidase activity and isoenzymes in spruce needles after exposure to different concentrations of cadmium. Environ Exp Bot 44:105–113

    Article  CAS  Google Scholar 

  • Sinha S, Saxena R (2006) Effect of iron on lipid peroxidation, and enzymatic and non-enzymatic antioxidants and bacoside-A content in medicinal plant Bacopa monnieri L. Chemosphere 62:1340–1350

    Article  CAS  Google Scholar 

  • Sinha S, Saxena R, Singh S (2005) Chromium induced lipid peroxidation in the plants of Pistia stratiotes L.: role of antioxidants and antioxidant enzymes. Chemosphere 58:595–604

    Article  CAS  Google Scholar 

  • Suszcynsky EM, Shan JR (1995) Phytotoxicity and accumulation of mercury in tobacco subjected to different exposure routes. Environ Toxicol Chem 14:61–67

    Article  CAS  Google Scholar 

  • Taghinia Hejabi A, Basavarajappa HT, Qaid Saeed AM (2010) Heavy metal pollution in Kabini river sediments. Int J Environ Res 4(4):629–636

    CAS  Google Scholar 

  • Venkatachalam P, Srivastava AK, Raghothama KG, Sahi SV (2009) Genes induced in response to mercury-ion-exposure in heavy metal hyperaccumulator Sesbania drummondii. Environ Sci Technol 43:843–850

    Article  CAS  Google Scholar 

  • Wang M, Zhou Q (2005) Single and joint toxicity of chlorimuron-ethyl, cadmium and copper acting on wheat Triticum aestivum. Ecotoxicol Environ Saf 60:169–175

    Article  CAS  Google Scholar 

  • Willekens H, Chamnongpol S, Davey M, Schraudner M, Langebartels C, Van Montagu M, Inzé D, Van Camp W (1997) Catalase is a sink for H2O2 and is indispensable for stress defense in C3 plants. Eur Mol Biol Org 16:4806–4816

    Article  CAS  Google Scholar 

  • Williams J, Kubelik AR, Livak KJ (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acid Res 18:6531–6535

    Article  CAS  Google Scholar 

  • Zavoda J, Cutright T, Szpak J, Fallon E (2001) Uptake, selectivity, and inhibition of hydroponic treatment of contaminants. J Environ Eng 127:502–508

    Article  CAS  Google Scholar 

  • Zhang J, Cui S, Kirkham MB (1995) Protoplasmic factors, antioxidant responses and chilling resistance in maize. Plant Physiol Biochem 33:567–575

    CAS  Google Scholar 

  • Zhang FQ, Wang YS, Lou ZP, Dong JD (2007) Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza). Chemosphere 67:44–50

    Article  CAS  Google Scholar 

  • Zhou ZS, Huang SQ, Guo K, Mehta SK, Zhang PC, Yang ZM (2007) Metabolic adaptation to mercury-induced oxidative stress in roots of Medicago sativa L. J Inorg Biochem 101:1–9

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors gratefully acknowledge Mr. R. Manikandan, Department of Biotechnology, Periyar University, for his kind help rendered during statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Venkatachalam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malar, S., Sahi, S.V., Favas, P.J.C. et al. Assessment of mercury heavy metal toxicity-induced physiochemical and molecular changes in Sesbania grandiflora L.. Int. J. Environ. Sci. Technol. 12, 3273–3282 (2015). https://doi.org/10.1007/s13762-014-0699-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-014-0699-4

Keywords

Navigation