Skip to main content

The usage of a zeolitic composite for quality improvement of copper contaminated mining wastewaters

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this paper, a new material based on zeolite has been investigated in an attempt to explore the possibility of using it as an efficient adsorbent of copper(II) from industrial wastewater. This composite material is composed of volcanic tuff (containing 83 % zeolite) and cellulose in a 4 to 1 ratio. The performances of the new adsorbent composite have been examined against those of a common adsorbent, the zeolitic volcanic tuff. The adsorption studies were carried out in a batch process at room temperature, and the effect of various parameters (i.e., initial concentration, contact time, adsorbent dosage and pH) was tested. The experimental data have been modeled with Langmuir, Freundlich and Temkin isotherms. The results correspond to Langmuir model showing a monolayer adsorption with a maximum adsorption capacity of 12.74 mg g−1 at 25 °C. The copper adsorption onto zeolitic composite was well described by a pseudo-second order kinetic model. The experimental results indicate a superior adsorption of copper(II) onto the new adsorbent when compared against the common zeolite.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Al-Anber M, Al-Anber ZA (2008) Utilization of natural zeolite as ion-exchange and sorbent material in the removal of iron. Desalination 225(1–3):70–81. doi:10.1016/j.desal.2007.07.006

  2. Anghel I, Grumezescu AM, Anghel AG, Chireac I, Marutescu L, Mihaiescu DE, Chifiriuc MC (2012) Antibiotic potentiator effect of the natural and synthetic zeolites with well defined nanopores with possible ENT clinical applications. Farmacia 60(5):688–695

    Google Scholar 

  3. Araya M, Pena C, Pizarro F, Olivares M (2003) Gastric response to acute copper exposure. Sci Total Environ 303(3):253–257. doi:10.1016/s0048-9697(02)00495-3

    CAS  Article  Google Scholar 

  4. ATSDR (2004) Toxicological profile for copper. U.S. Department of Health and Human Services, Atlanta

    Google Scholar 

  5. Barakat MA (2011) New trends in removing heavy metals from industrial wastewater. Arab J Chem 4(4):361–377. doi:10.1016/j.arabjc.2010.07.019

  6. Basaldella EI, Vázquez PG, Iucolano F, Caputo D (2007) Chromium removal from water using LTA zeolites: effect of pH. J Colloid Interface Sci 313(2):574–578. doi:10.1016/j.jcis.2007.04.066

  7. Bedelean H, Măicăneanu A, Stanca M, Burcă S (2009) Removal of heavy metal ions from wastewaters using natural materials. Studia Universitatis Babeş-Bolyai, Geologia 16:179–180

    Google Scholar 

  8. Bedelean H, Maicaneanu A, Burca S, Stanca M (2010) Romanian zeolitic volcanic tuffs and bentonites used to remove ammonium ions from wastewaters. Hell J Geosci 45:23–31

    Google Scholar 

  9. Bizerea Spiridon O, Preda E, Botez A, Pitulice L (2013) Phenol removal from wastewater by adsorption on zeolitic composite. Environ Sci Pollut Res Int 20(9):6367–6381. doi:10.1007/s11356-013-1625-x

    CAS  Article  Google Scholar 

  10. Bostan I (2013) Economic opportunities for the exploitation of copper ore in the Romanian carpathians. Metalurgija 52(2):282–284

    Google Scholar 

  11. Butler E, Hung Y-T, Yeh RY-L, Suleiman Al Ahmad M (2011) Electrocoagulation in wastewater treatment. Water 3(2):495–525

    Article  Google Scholar 

  12. Chaudhuri M, Kutty SRM, Yusop SH (2010) Copper and cadmium adsorption by activated carbon prepared from coconut coir. Nat Environ Pollut Technol 9(1):25–28

    CAS  Google Scholar 

  13. Cobbina SJ, Nkuah D, Tom-Dery D, Obiri S (2013) Non-cancer risk assessment from exposure to mercury (Hg), cadmium (Cd), arsenic (As), copper (Cu) and lead (Pb) in boreholes and surface water in Tinga, in the Bole-Bamboi District, Ghana. J Toxicol Environ Health Sci 5(2):29–36

    CAS  Article  Google Scholar 

  14. De Castro Dantas TN, Neto AAD, De A, Moura MCP (2001) Removal of chromium from aqueous solutions by diatomite treated with microemulsion. Water Res 35(9):2219–2224. doi:10.1016/S0043-1354(00)00507-8

  15. Demirbas E, Dizge N, Sulak MT, Kobya M (2009) Adsorption kinetics and equilibrium of copper from aqueous solutions using hazelnut shell activated carbon. Chem Eng J 148(2–3):480–487. doi:10.1016/j.cej.2008.09.027

  16. Dermentzis K, Christoforidis A, Valsamidou E (2011) Removal of nickel, copper, zinc and chromium from synthetic and industrial wastewater by electrocoagulation. Int J Environ Sci 1(5):697–710

    CAS  Google Scholar 

  17. Dizadji N, Dehpouri S, Vossoughi SSS (2012) Experimental investigation of adsorption of heavy metals (copper (II)) from industrial wastewater with clinoptilolite. Chem Eng 29:1309–1314

    Google Scholar 

  18. Dursun G, Çiçek H, Dursun AY (2005) Adsorption of phenol from aqueous solution by using carbonised beet pulp. J Hazard Mater 125(1–3):175–182. doi:http://dx.doi.org/10.1016/j.jhazmat.2005.05.023

  19. ECHA (2008) Voluntary risk assessment reports—copper and copper compounds. Office of Official Publications of the European Communities, Luxembourg

    Google Scholar 

  20. Englert AH, Rubio J (2005) Characterization and environmental application of a Chilean natural zeolite. Int J Miner Process 75(1–2):21–29. doi:10.1016/j.minpro.2004.01.003

  21. Erdem E, Karapinar N, Donat R (2004) The removal of heavy metal cations by natural zeolites. J Colloid Interface Sci 280(2):309–314. doi:10.1016/j.jcis.2004.08.028

  22. Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manage 92(3):407–418. doi:10.1016/j.jenvman.2010.11.011

  23. Gadhari NS, Sanghavi BJ, Srivastava AK (2011) Potentiometric stripping analysis of antimony based on carbon paste electrode modified with hexathia crown ether and rice husk. Anal Chim Acta 703(1):31–40. doi:10.1016/j.aca.2011.07.017

  24. Gazola FC, Pereira MR, Barros MASD, Silva EA, Arroyo PA (2006) Removal of Cr3+ in fixed bed using zeolite NaY. Chem Eng J 117(3):253–261. doi:10.1016/j.cej.2005.11.014

  25. Gupte A, Mumper RJ (2009) Elevated copper and oxidative stress in cancer cells as a target for cancer treatment. Cancer Treat Rev 35(1):32–46. doi:10.1016/j.ctrv.2008.07.004

  26. Haghseresht F, Lu GQ (1998) Adsorption characteristics of phenolic compounds onto coal-reject-derived adsorbents. Energy Fuels 12(6):1100–1107. doi:10.1021/ef9801165

    CAS  Article  Google Scholar 

  27. Halimoon N, Yin RGS (2010) Removal of Heavy metals from textile Wastewater using Zeolite. Environ Asia 3(2010):124–130

    Google Scholar 

  28. Hameed BH, Rahman AA (2008) Removal of phenol from aqueous solutions by adsorption onto activated carbon prepared from biomass material. J Hazard Mater 160(2–3):576–581. doi:10.1016/j.jhazmat.2008.03.028

  29. Han R, Zou W, Zhang Z, Shi J, Yang J (2006) Removal of copper(II) and lead(II) from aqueous solution by manganese oxide coated sand: I. Characterization and kinetic study. J Hazard Mater 137(1):384–395. doi:10.1016/j.jhazmat.2006.02.021

  30. Ho YS, McKay G (1998) A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process Saf Environ Prot 76(4):332–340. doi:10.1205/095758298529696

  31. Horsfall M, Spiff AI (2005) Equilibrium sorption study of Al3+, Co2+ and Ag+ in aqueous solutions by fluted pumpkin (Telfairia occidentalis HOOK f) waste biomass. Acta Chim Slov 52(2):174–181

    Google Scholar 

  32. Ionel R, Gontean A, Draut-Gherban P (2011) Implementation of a CO concentration monitoring system using virtual instrumentation. In: IEEE 6th international conference on intelligent data acquisition and advanced computing systems Prague, 15–17 Sept 2011

  33. Ionel R, Vasiu G, Mischie S (2012) GPRS based data acquisition and analysis system with mobile phone control. Measurement 45(6):1462–1470. doi:10.1016/j.measurement.2012.03.003

  34. Kabuba J, Mulaba-Bafubiandi A, Battle K (2012) Binary mixture of copper-cobalt ions uptake by Zeolite using neural network. World Acad Sci Eng Technol 68:1216–1221

    Google Scholar 

  35. Kaewsarn P (2002) Biosorption of copper(II) from aqueous solutions by pre-treated biomass of marine algae Padina sp. Chemosphere 47(10):1081–1085. doi:10.1016/S0045-6535(01)00324-1

  36. Karatas M (2012) Removal of Pb(II) from water by natural zeolitic tuff: kinetics and thermodynamics. J Hazard Mater 199–200:383–389. doi:10.1016/j.jhazmat.2011.11.035

  37. Kovác VSK (2004) Virtual instrumentation and distributed measurement systems. J Electr Eng 55(1–2):50–56

    Google Scholar 

  38. Kurniawan TA, Chan GYS, Lo W-H, Babel S (2006a) Comparisons of low-cost adsorbents for treating wastewaters laden with heavy metals. Sci Total Environ 366(2–3):409–426. doi:10.1016/j.scitotenv.2005.10.001

  39. Kurniawan TA, Chan GYS, Lo W-H, Babel S (2006b) Physico–chemical treatment techniques for wastewater laden with heavy metals. Chem Eng J 118(1–2):83–98. doi:10.1016/j.cej.2006.01.015

  40. Lagergren S (1898) Zur theorie der sogenannten adsorption gelöster stoffe Kungliga Svenska Vetenskapsakademiens. Handlingar 24(4):1–39

    Google Scholar 

  41. Madhava Rao M, Ramesh A, Purna Chandra Rao G, Seshaiah K (2006) Removal of copper and cadmium from the aqueous solutions by activated carbon derived from Ceiba pentandra hulls. J Hazard Mater 129(1–3):123–129. doi:10.1016/j.jhazmat.2005.08.018

  42. Margeta K, Logar NZ, Šiljeg M, Farkaš A (2013) Natural zeolites in water treatment—how effective is their use. In: Elshorbagy W (ed) Water treatment. InTech, Rijeka, pp 81–112

  43. Milu V, Leroy J, Peiffert C (2002) Water contamination downstream from a copper mine in the Apuseni Mountains, Romania. Env Geol 42(7):773–782. doi:10.1007/s00254-002-0580-5

    CAS  Article  Google Scholar 

  44. Mobin SM, Sanghavi BJ, Srivastava AK, Mathur P, Lahiri GK (2010) Biomimetic sensor for certain phenols employing a copper(II) complex. Anal Chem 82(14):5983–5992. doi:10.1021/ac1004037

    CAS  Article  Google Scholar 

  45. Motsi T (2010) Remediation of acid mine drainage using natural zeolite. PhD, University of Birmingham, UK

    Google Scholar 

  46. Pane L, Solisio C, Lodi A, Luigi Mariottini G, Converti A (2008) Effect of extracts from Spirulina platensis bioaccumulating cadmium and zinc on L929 cells. Ecotoxicol Environ Saf 70(1):121–126. doi:10.1016/j.ecoenv.2007.05.019

    CAS  Article  Google Scholar 

  47. Panias D (2006) Consequences of environmental issues on sustainability of metal industries in Europe: the case study of bor. Metal J Metall 12(4):239–250

    Google Scholar 

  48. Papandreou A, Stournaras CJ, Panias D (2007) Copper and cadmium adsorption on pellets made from fired coal fly ash. J Hazard Mater 148(3):538–547. doi:10.1016/j.jhazmat.2007.03.020

  49. Patnukao P, Kongsuwan A, Pavasant P (2008) Batch studies of adsorption of copper and lead on activated carbon from Eucalyptus camaldulensis Dehn. bark. J Environ Sci 20(9):1028–1034. doi:10.1016/S1001-0742(08)62145-2

  50. Polat H, Molva M, Polat M (2006) Capacity and mechanism of phenol adsorption on lignite. Int J Miner Process 79(4):264–273. doi:10.1016/j.minpro.2006.03.003

  51. Rangsayatorn N, Pokethitiyook P, Upatham ES, Lanza GR (2004) Cadmium biosorption by cells of Spirulina platensis TISTR 8217 immobilized in alginate and silica gel. Environ Int 30(1):57–63. doi:10.1016/S0160-4120(03)00146-6

  52. Sanghavi BJ, Mobin SM, Mathur P, Lahiri GK, Srivastava AK (2013) Biomimetic sensor for certain catecholamines employing copper(II) complex and silver nanoparticle modified glassy carbon paste electrode. Biosens Bioelectron 39(1):124–132. doi:10.1016/j.bios.2012.07.008

  53. Santos VG, Souza JTM, Tarley CT, Caetano J, Dragunski D (2011) Copper ions adsorption from aqueous medium using the biosorbent sugarcane bagasse in natura and chemically modified. Water Air Soil Pollut 216(1–4):351–359. doi:10.1007/s11270-010-0537-3

    Article  Google Scholar 

  54. Smical I, Mihaly-Cozmuţa L, Costin D (2010) Use of natural zeolites from Maramures county (Romania) in removal of Cu2+, Pb2+, Zn2+ ions from industrial wastewaters. Adv Environ Sci Int J Bioflux Soc 2(2):181–188

    Google Scholar 

  55. Solisio C, Lodi A, Torre P, Converti A, Del Borghi M (2006) Copper removal by dry and re-hydrated biomass of Spirulina platensis. Bioresour Technol 97(14):1756–1760. doi:10.1016/j.biortech.2005.07.018

  56. Sprynskyy M, Buszewski B, Terzyk AP, Namieśnik J (2006) Study of the selection mechanism of heavy metal (Pb2+, Cu2+, Ni2+, and Cd2+) adsorption on clinoptilolite. J Colloid Interface Sci 304(1):21–28. doi:10.1016/j.jcis.2006.07.068

  57. Stankovic V, Bozic D, Gorgievski M, Bogdanovic G (2009) Heavy metal ions adsorption from mine waters by sawdust. Chem Ind Chem Eng Q 15(4):237–249. doi:10.2298/ciceq0904237s

    CAS  Article  Google Scholar 

  58. Teixeira RNP, Sousa Neto VO, Oliveira JT, Oliveira TC, Melo DQ, Silva MAA, Nascimento RF (2013) Study on the use of roasted barley powder for adsorption of Cu2+ ions in batch experiments and in fixed-bed columns. Bioresources 8(3):3556–3573

    Article  Google Scholar 

  59. Tran HH, Roddick FA (1999) Comparison of chromatography and desiccant silica gels for the adsorption of metal ions. II. Fixed-bed study. Water Res 33(13):3001–3011. doi:10.1016/S0043-1354(99)00018-4

  60. Tumin ND, Chuah AL, Zawani Z, Rashid SA (2008) Adsorption of copper from aqueous solution by Elais Guineensis kernel activated carbon. J Eng Sci Technol 3(2):180–189

    Google Scholar 

  61. UNEP (2009) Mining and environment in the Western Balkans. United Nations, Geneva

    Google Scholar 

  62. Wu D, Sui Y, He S, Wang X, Li C, Kong H (2008) Removal of trivalent chromium from aqueous solution by zeolite synthesized from coal fly ash. J Hazard Mater 155(3):415–423. doi:10.1016/j.jhazmat.2007.11.082

  63. Yahaya NKEM, Latiff MFPM, Abustan I, Bello OS, Ahmad MA (2011) Adsorptive removal of Cu(II) using activated carbon prepared from rice husk by ZnCl2 activation and subsequent gasification with CO2. Int J Eng Technol 11(01):164–168

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of the project HURO/0901/126/2.2.3 NETECOWAT financed by EU under the framework of Hungary-Romania Cross-border Cooperation Programme.

Author information

Affiliations

Authors

Corresponding author

Correspondence to L. Pitulice.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dascălu, D., Pitulice, L., Ionel, R. et al. The usage of a zeolitic composite for quality improvement of copper contaminated mining wastewaters. Int. J. Environ. Sci. Technol. 12, 2285–2298 (2015). https://doi.org/10.1007/s13762-014-0629-5

Download citation

Keywords

  • Copper
  • Mine wastewater
  • Wastewater treatment
  • Zeolite
  • Adsorption