Skip to main content
Log in

Sorption and desorption of tetracycline on layered manganese dioxide birnessite

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Birnessite is one of the most common manganese oxides in the clay-sized fraction (<2 μm) of soils and has high cation exchange capacity and larger surface area. Birnessite was previously studied for decomposition of selected antibiotics from water. In this study, the removal of tetracycline (TC) by birnessite from aqueous solution was investigated as a function of initial tetracycline concentration, solution pH, temperature, and equilibrium time. Changes in solid phase after TC adsorption and desorption were characterized by X-ray photoelectron spectroscopy, X-ray diffraction (XRD), and Fourier transform infrared analyses. Desorption of exchangeable cations accompanying TC removal and partial desorption of TC from birnessite by AlCl3 confirmed that cation exchange was responsible for TC removal at low initial concentrations. Both the external and internal surface areas were readily available for TC uptake by birnessite. The intercalated TC formed a horizontal monolayer configuration in the interlayer of birnessite as deduced from XRD analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Al-Attar L, Dyer A (2007) Ion exchange in birnessite. Land Contam Reclam 15:427–436

    Article  Google Scholar 

  • Ammundsen B, Wortham E, Jones DJ, Rozière J (1998) Intercalation reactions of layered manganese(III, IV) oxides. Mol Cryst Liq Cryst 311:327–332

    Article  Google Scholar 

  • Bound JP, Voulvoulis N (2004) Pharmaceuticals in the aquatic environment-a comparison of risk assessment strategies. Chemosphere 56:1143–1155

    Article  CAS  Google Scholar 

  • Chang PH, Jean JS, Jiang WT, Li Z (2009a) Mechanism of tetracycline sorption on rectorite. Colloid Surf A-Physicochem Eng Asp 339:94–99

    Article  CAS  Google Scholar 

  • Chang PH, Li Z, Yu TL, Munkhbayer S, Kuo TH, Hung YC, Jean JS, Lin KH (2009b) Sorptive removal of tetracycline from water by palygorskite. J Hazard Mater 165:48–155

    Article  Google Scholar 

  • Chang PH, Li Z, Jean JS, Jiang WT, Wang CJ, Lin KH (2012) Adsorption of tetracycline on 2:1 layered non-swelling clay mineral illite. Appl Clay Sci 67–68:158–163

    Article  Google Scholar 

  • Chen WR, Huang CH (2011) Transformation kinetics and pathways of tetracycline antibiotics with manganese oxide. Environ Pollut 159:1092–1100

    Article  CAS  Google Scholar 

  • Chen WR, Ding Y, Johnston CT, Teppen BJ, Boyd SA, Li H (2010) Reaction of lincosamide antibiotics with manganese oxide in aqueous solution. Environ Sci Technol 44:4486–4492

    Article  CAS  Google Scholar 

  • Chen G, Zhao L, Dong YH (2011) Oxidative degradation kinetics and products of chlortetracycline by manganese dioxide. J Hazard Mater 193:128–138

    Article  CAS  Google Scholar 

  • Collaizzi JL, Klink PR (1969) pH partition behavior of tetracyclines. J Pharm Sci 58:1184–1189

    Article  Google Scholar 

  • Drits VA, Lanson B, Gaillot AC (2007) Birnessite polytype systematics and identification by powder X-ray diffraction. Am Miner 92:771–788

    Article  CAS  Google Scholar 

  • Duarte HA, Carvalho S, Paniago EB, Simas AM (1999) Importance of tautomers in the chemical behavior of tetracyclines. J Pharm Sci 88:111–120

    Article  CAS  Google Scholar 

  • Fendorf SE, Sparks DL, Fendorf M (1994) Mechanism of aluminum sorption on birnessite: Influences on chromium (III) oxidation. In: Proceedings of the 15th World Congr Soil Sci 3a, Intl Soc Soil Sci Publ pp 129–144

  • Figueroa RA, Mackay AA (2005) Sorption of oxytetracycline to iron oxides and iron oxide-rich soils. Environ Sci Technol 39:6664–6671

    Article  CAS  Google Scholar 

  • Figueroa RA, Leonard A, Mackay AA (2004) Modeling tetracycline antibiotic sorption to clays. Environ Sci Technol 38:476–483

    Article  CAS  Google Scholar 

  • Figueroa RA, Vasudevan D, MacKay AA (2010) Trends in soil sorption coefficients within common antimicrobial families. Chemosphere 79:786–793

    Article  Google Scholar 

  • Gambinossi F, Mecheri B, Nocentini M, Puggelli M, Caminati G (2004) Effect of the phospholipid head group in antibiotic-phospholipid association at water–air interface. Biophys Chem 110:101–117

    Article  CAS  Google Scholar 

  • Gao J, Hedman C, Liu C, Guo T, Pedersen JA (2012) Transformation of sulfamethazine by manganese oxide in aqueous solution. Environ Sci Technol 46:2642–2651

    Article  CAS  Google Scholar 

  • Golden DC, Chen CC, Dixon JB (1986) Ion exchange, thermal transformations and oxidising properties of birnessite. Clays Clay Miner 34:511–520

    Article  CAS  Google Scholar 

  • Grangeon S, Lanson B, Miyata N, Tani Y, Manceau A (2010) Structure of nanocrystalline phyllomanganates produced by freshwater fungi. Am Miner 95:1608–1616

    Article  CAS  Google Scholar 

  • Gu C, Karthikeyan KG (2005) Interaction of tetracycline with aluminum and iron hydrous oxides. Environ Sci Technol 39:2660–2667

    Article  CAS  Google Scholar 

  • Gu C, Karthikeyan KG (2008) Sorption of the antibiotics tetracycline to humic-mineral complexes. J Environ Qual 37:704–711

    Article  CAS  Google Scholar 

  • Gu C, Karthikeyan KG, Sibley SD, Pedersen JA (2007) Complexation of the antibiotic tetracycline with humic acid. Chemosphere 66:1494–1501

    Article  CAS  Google Scholar 

  • Jiang WT, Chang PH, Wang YS, Tsai Y, Jean JS, Li Z, Krukowski K (2013) Removal of ciprofloxacin from water by birnessite. J Hazard Mater 250–251:362–369

    Article  Google Scholar 

  • Jokic A, Frenkel AI, Huang PM (2001) Effect of light on birnessite catalysis of the Maillard reaction and its implication in humification. Can J Soil Sci 81:277–283

    Article  CAS  Google Scholar 

  • Kulshrestha P, Giese RF Jr, Aga DS (2004) Investigating the molecular interactions of oxytetracycline in clay and organic matter: insights on factors affecting its mobility in soil. Environ Sci Technol 38:4097–4105

    Article  CAS  Google Scholar 

  • Li Z, Chang PH, Jean JS, Jiang WT (2010a) Interaction between tetracycline and smectite in aqueous solution. J Colloid Interface Sci 341:311–319

    Article  CAS  Google Scholar 

  • Li Z, Schulz L, Ackley C, Fenske N (2010b) Mechanism of tetracycline adsorption on kaolinite with pH-dependent surface charges. J Colloid Interface Sci 351:254–260

    Article  CAS  Google Scholar 

  • Liu Z, Ooi K, Kanoh H, Tang W, Tomida T (2000) Swelling and delamination behaviors of birnessite-type manganese oxide by intercalation of tetraalkylammonium ions. Langmuir 16:4154–4164

    Article  CAS  Google Scholar 

  • Liu C, Zhang L, Li F, Wang Y, Gao Y, Li X, Cao X, Feng C, Dong J, Sun L (2009) Dependence of sulfadiazine oxidative degradation on physicochemical properties of manganese dioxides. Ind Eng Chem Res 48:10408–10413

    Article  CAS  Google Scholar 

  • Miller GH, Smith HL, Rock WL, Hedberg S (1977) Antibacterial structure-activity relationships obtained with resistant microorganisms. I: inhibition of R-factor resistant Escherichia coli by tetracyclines. J Pharm Sci 66:88–92

    Article  CAS  Google Scholar 

  • Mohan D, Pittman CU Jr (2007) Arsenic removal from water/wastewater using adsorbents—a critical review. J Hazard Mater 142:1–53

    Article  CAS  Google Scholar 

  • Othersen OG, Beierlein F, Lanig H, Clark T (2003) Conformations and tautomers of tetracycline. J Phys Chem B 107:13743–13749

    Article  CAS  Google Scholar 

  • Peña J, Kwon KD, Refson K, Bargar JR, Sposito G (2010) Mechanisms of nickel sorption by a bacteriogenic birnessite. Geochim Cosmochim Acta 74:3076–3089

    Article  Google Scholar 

  • Pils JRV, Laird DA (2007) Sorption of tetracycline and chlortetracycline on K- and Ca-saturated soil clays, humic substances, and clay-humic complexes. Environ Sci Technol 41:1928–1933

    Article  CAS  Google Scholar 

  • Post JE, Veblen DR (1990) Crystal structure determinations of synthetic sodium, magnesium, and potassium birnessite using TEM and the Rietveld method. Am Miner 75:477–489

    CAS  Google Scholar 

  • Renuka R, Ramamurthy S (2000) An investigation on layered birnessite type manganese oxides for battery applications. J Power Sources 87:144–152

    Article  CAS  Google Scholar 

  • Rubert KF, Pedersen JA (2006) Kinetics of oxytetracycline reaction with a hydrous manganese oxide. Environ Sci Technol 40:7216–7220

    Article  CAS  Google Scholar 

  • Sarmah AK, Meyer MT, Boxall ABA (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65:725–759

    Article  CAS  Google Scholar 

  • Turku I, Sainio T, Paatero E (2007) Thermodynamics of tetracycline adsorption on silica. Environ Chem Lett 5:225–228

    Article  CAS  Google Scholar 

  • Wang Y, Feng X, Villalobos M, Tan W, Liu F (2012) Sorption behavior of heavy metals on birnessite: relationship with its Mn average oxidation state and implications for types of sorption sites. Chem Geol 292–293:25–34

    Article  Google Scholar 

  • Wessels JM, Ford WE, Szymczak W, Schneider S (1998) The complexation of tetracycline and anhydrotetracycline with Mg2+ and Ca2+: a spectroscopic study. J Phys Chem B 102:9323–9331

    Article  CAS  Google Scholar 

  • White WB, Vito C, Scheetz BE (2009) The mineralogy and trace element chemistry of black manganese oxide deposits from caves. J Cave Karst Stud 71:136–143

    CAS  Google Scholar 

  • Zhang H, Huang CH (2005) Oxidative transformation of fluoroquinolone antibacterial agents and structurally related amines by manganese oxide. Environ Sci Technol 39:4474–4483

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to P.-S. Lee, A.-L. Huang, and C.-Y. Lin for their help with XRD and ICP-OES analyses, and K.-C. Huang for field sampling. This work was funded by grant NSC101-2116-M-006-002 to Jiang from National Science Council and a grant to Li from the Headquarters of University Advancement at the National Cheng Kung University, which is sponsored by the Ministry of Education, Taiwan, ROC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, WT., Chang, PH., Wang, YS. et al. Sorption and desorption of tetracycline on layered manganese dioxide birnessite. Int. J. Environ. Sci. Technol. 12, 1695–1704 (2015). https://doi.org/10.1007/s13762-014-0547-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-014-0547-6

Keywords

Navigation