Comparison of air and steam stripping: removal of organic halogen compounds from process wastewaters

  • A. J. Toth
  • P. Mizsey
Original Paper


In the engineering practice, there are two basic alternatives of physicochemical treatment for the removal of volatile compounds from process wastewaters: stripping with air or stripping with steam. In this work, these alternatives are investigated and compared in the case of a real industrial problem that is typical for the fine chemical industry and general conclusion is drawn. The removal of the organically bound halogens, called adsorbable organically bound halogens, is investigated. The two alternatives, air and steam stripping, are first modeled in the professional software environment of ASPEN Plus®. The model is validated on the data of an existing air stripper for the removal of organic halogens. Same organic halogens removal is applied for the design of a steam stripper. It is proved that the steam stripping shows better operability and economic performance than the air stripping; moreover, the volatile and/or adsorbable organically bound halogen compounds can be recovered in the distillate and they can be reused improving the sustainability.


Adsorbable organically bound halogens ASPEN Plus® Cost estimation Operability features Pharmaceutical process wastewater Stripping 



The authors would like to acknowledge the financial help of KMR—12-1-2012-0066, TAMOP-4-.2.2.A-11/1/KONV-2012-0072 and SH 7/2/14 Swiss-Hungarian Joined project.


  1. Alfke G, Bunch G, Crociani G, Dando D, Fontaine M, Goodsell P, Green A, Hafker W, Isaak G, Marvillet J, Poot B, Sutherland H, van der Rest A, van Oudenhoven J, Walden T (1999) Best available techniques to reduce emission from refineries. CONCAWE. Document no. 99/01. Accessed 11 Mar 2013.
  2. Asia IO, Akporhonor EE (2007) Characterization and physicochemical treatment of wastewater from rubber processing factory. Int J Phys Sci 2:61–67Google Scholar
  3. Bajnoczy G (2013) (in Hungarian). Accessed 23 Aug 2013
  4. Basakcilardan-kabakci S, Ipekoglu AN, Talinli I (2007) Recovery of ammonia from human urine by stripping and absorption. Environ Eng Sci 24:615–624. doi: 10.1089/ees2006.0412 CrossRefGoogle Scholar
  5. Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (BMU) (2000) Hinweise und Erläuterungen zu Anhang 22 der Abwasserverordnung. Book, GermanyGoogle Scholar
  6. Budapest Sewage Works Ltd. (2013) Sewer usage charge. Accessed 7 Mar 2013
  7. Chempack Co. (2007) Polyhedral hollow ball. Accessed 11 Mar 2013
  8. DIN 38409-H14 (1996) Water quality determination of adsorbable organically bound halogens (AOX)Google Scholar
  9. Douglas JM (1989) Conceptual design of chemical processes. McGrew-Hill, New York, pp 568–580Google Scholar
  10. Driscoll TP, Barber JB, Chandran K, Constable S, Darnell C, DiMenna R, Gaines B, Goodman A, Hlavek R, Johns FJ, Jones TS, Kemp G, Kim B, Krill WP, Maillacheruvu K, Millano EF, Nichols C, Parham G, Philbrook D, Severin BF, Shamas J, Shamskhorzani R, Solvie J, Venkatasubbiah V, Wirtz R, Wong-Chong G, Yeh B, Young J (2008) Industrial wastewater management, treatment, and disposal. WEF manual of practice no. FD-3rd. Mcgraw-Hill, New York, pp 474–489Google Scholar
  11. Ecker A, Winter B (2000) Stand der Technik bei Raffinerien im Hinblick auf die IPPC-Richtlinie. Monographien, Band 119. Umweltbundesamt GmbH, Federal Envionment Agency, Wien, Austria. Accessed 11 Mar 2013
  12. ENTEC UK Ltd. (1996) Cost-effective separation technologies for minimising wastes and effluents. Report. Environmental technology best practice programme, guide GG37Google Scholar
  13. European Environment Agency (EEA) (1997) Effluent treatment techniques—technical guidance note (abatement) no. A4, UKGoogle Scholar
  14. Ferrer J, Seco A, Serralta J, Ribes J, Manga J, Asensi E, Morenilla JJ, Llavador F (2008) DESASS: a software tool for designing, simulating and optimising WWTPs. Environ Model Softw 23:19–26. doi: 10.1016/j.envsoft.2007.04.005 CrossRefGoogle Scholar
  15. Fredenslund A, Jones RL, Prausnitz JM (1975) Group-contribution estimation of activity coefficients in nonideal liquid mixtures. AlChE J 21:1086–1099. doi: 10.1002/aic.690210607 CrossRefGoogle Scholar
  16. Gmehling J, Menke J, Krafczyk J, Fischer K (1994) Azeotropic data, part I. Wiley-VCH, WeinheimGoogle Scholar
  17. Gonzalez-Velasco JR, Aranzabal A, Gutierrez-Ortiz JI, Lopez-Fonseca R, Gutierrez-Ortiz MA (1998) Activity and product distribution of alumina supported platinum and palladium catalysts in the gas-phase oxidative decomposition of chlorinated hydrocarbons. Appl Catal B Environ 19:189–197. doi: 10.1016/S0926-3373(98)00078-2 CrossRefGoogle Scholar
  18. Government Regulation (2004) 220/2004. (VII. 21.). Accessed 7 Mar 2013.
  19. IPPC reference document on best available techniques in common waste water and waste gas treatment/management systems in the chemical sector (2002) Applied treatment technology. European Commission, Brussels (EU), pp 124–127Google Scholar
  20. Koczka K (2009) Environmental conscious design and industrial application of separation processes. Dissertation, BME, Budapest, HungaryGoogle Scholar
  21. Koczka K, Mizsey P (2010) New area for distillation: wastewater treatment. Per Pol Chem Eng 54:41–45. doi: 10.3311/ CrossRefGoogle Scholar
  22. Köhler A, Hellweg S, Recan E, Hungerbühler K (2007) Input-dependent life-cycle inventory model of industrial wastewater-treatment processes in the chemical sector. Environ Sci Technol 41:5515–5522CrossRefGoogle Scholar
  23. Lapkin A, Constable D (2008) Green chemistry metrics. Measuring and monitoring sustainable processes. Wiley-VHC, WeinheimCrossRefGoogle Scholar
  24. Lozowski D (2011) Ecomomic indicators. Chem Eng 118:55–56Google Scholar
  25. Major ZS (2008) AOX removal from pharmaceutical process wastewater by air and steam stripping. M.Sc. thesis, BME, Budapest, HungaryGoogle Scholar
  26. Marsili-Libelli S (2010) Modelling and automation of water and wastewater treatment processes. Environ Model Softw 25:613–615. doi: 10.1016/j.envsoft.2009.11.002 CrossRefGoogle Scholar
  27. Ministry of Environment Regulation (2004). 28/2004. (XII. 25.). Accessed 7 Mar 2013.
  28. Mizsey P (1991) A global approach to the synthesis of entire chemical processes. Dissertation, ETH, Zürich, SwitzerlandGoogle Scholar
  29. Mizsey P (1994) Waste reduction in the chemical industry—a two level problem. J Hazard Mater 37:1–13. doi: 10.1016/0304-3894(94)85028-3 CrossRefGoogle Scholar
  30. Mizsey P, Toth AJ (2012) Application of the principles of industrial ecology for the treatment of process waste waters with physicochemical tools. Ind Ecol 1:101–126 (in Hungarian)Google Scholar
  31. Mizsey P, Koczka K, Tungler A (2008) Treatment of process wastewaters with physicochemical tools. Hung J Chem 114:107–113 (in Hungarian)Google Scholar
  32. Mohammad-Hosseini A, Bakos V, Jobbágy A, Tardy G, Mizsey P, Makó M, Tungler A (2011) Co-treatment and utilisation of liquid pharmaceutical wastes. Per Pol Chem Eng 55:3–10. doi: 10.3311/ CrossRefGoogle Scholar
  33. North Ostrobothnia Regional Environment Centre (NOREC) (2000) Examples of waste water and waste gas treatment in the chemical industry in Finland. ReportGoogle Scholar
  34. Oguz H, Koch S, Weisweiler W (2000) Comparison of mechanistic models for the catalytic oxidation of trichloroethylene over Cr/Al2O3 and Al–Cr/Porous glass catalysts. Chem Eng Technol 23:395–400. doi: 10.1002/(SICI)1521-4125(200005)23:5<395:AID-CEAT395>3.0.CO;2-L CrossRefGoogle Scholar
  35. Quan XJ, Wang FP, Zhao QH, Zhao TT, Xiang JX (2009) Air stripping of ammonia in a water-sparged aerocycleone reactor. J Hazard Mater 170:983–988. doi: 10.1016/j.hazmat.2009.05.083 CrossRefGoogle Scholar
  36. Quan X, Ye C, Xiong Y, Xiang J, Wang F (2010) Simultaneous removal of ammonia, P and COD from anaerobically digested piggery wastewater using an integrated process of chemical precipitation and air stripping. J Hazard Mater 178:326–332. doi: 10.1016/j.hazmat.2010.01.083 CrossRefGoogle Scholar
  37. Rivas A, Irizar I, Ayesa E (2008) Model-based optimisation of wastewater treatment plants design. Environ Model Softw 23:435–450. doi: 10.1016/j.envsoft.2007.06.009 CrossRefGoogle Scholar
  38. Sackewitz M (1999) Luftstrippverfahren zur Teilstrombehandlung. Betriebserfahrungen auf den Kläranlagen Göttingen und Cuxhaven. Umwelt 29:16–18Google Scholar
  39. Saracco G, Genon G (1994) High temperature ammonia stripping and recovery from process liquid wastes. J Hazard Mater 37:191–206. doi: 10.1016/0304-3894(94)85048-8 CrossRefGoogle Scholar
  40. Sattler K (1977) Thermische Trennverfahren. Würzburg, Vogel, p 3.7Google Scholar
  41. Seiss M, Gahr A, Niesser R (2001) Improved AOX degradation in UV oxidative wastewater treatment by dialysis with nanofiltration membrane. Water Res 35:3242–3248. doi: 10.1016/S0043-1354(01)00028-8 CrossRefGoogle Scholar
  42. Simoni LD, Lin Y, Brennecke JF, Stadtherr MA (2008) Modeling liquid–liquid equilibrium of ionic liquid systems with NRTL, electrolyte-NRTL, and UNIQUAC. Ind Eng Chem Res 47:256–272. doi: 10.1021/je70956j CrossRefGoogle Scholar
  43. Toth AJ, Gergely F, Mizsey P (2011) Physicochemical treatment of pharmaceutical wastewater: distillation and membrane processes. Per Pol Chem Eng 55:59–67. doi: 10.3311/ CrossRefGoogle Scholar
  44. Wang Y, Pelkonen M, Kotro M (2010) Treatment of high ammonium-nitrogen wastewater from composting facilities by air stripping and catalytic oxidation. Water Air Soil Pollut 208:259–273. doi: 10.1007/s11270-009-0164-z CrossRefGoogle Scholar

Copyright information

© Islamic Azad University (IAU) 2014

Authors and Affiliations

  1. 1.Department of Chemical and Environmental Process Engineering, Faculty of Chemical Technology and BiotechnologyBudapest University of Technology and EconomicsBudapestHungary
  2. 2.Research Institute of Chemical and Process EngineeringUniversity of PannoniaVeszpremHungary

Personalised recommendations