Skip to main content
Log in

Study of hybrid immobilized biomass of Pleurotus sajor-caju and Jasmine sambac for sorption of heavy metals

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

The current study deals with evaluation of biosorption feasibility for removal of Cu(II) and Zn(II) by hybrid immobilized biosorbent of Pleurotus sajor-caju and Jasmine sambac. Batch adsorption experiments were carried out to assess the effect of pH, initial metal concentration, biomass dose, temperature and time. The biosorption efficiency of Cu(II) and Zn(II) ions for hybrid immobilized biosorbent increases with rising pH values. The hybrid immobilized biosorbent illustrated the highest biosorption capability at pH 5 for Cu(II), 6 for Zn(II), at 0.05 g/100 mL dose and 100 mg/L initial metal concentration of both ions. Uptake kinetics followed the pseudo-second-order model and equilibrium was described by Langmuir and Freundlich isotherms. Adsorption ratios of Cu(II) and Zn(II) were best fitted to Langmuir isotherm. The best temperature for ion uptake was found to be 30 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdulrasaq OO, Basiru OG (2010) Removal of copper (II), iron (III) and lead (II) ions from mono-component simulated waste effluent by adsorption on coconut husk. Afr J Environ Sci Technol 4(6):382–387

    CAS  Google Scholar 

  • Ahlawalia SS, Goyal D (2005) Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol 98(12):2243–2257

    Article  Google Scholar 

  • Ajmal M, Rao RAK, Ahmad R, Ahmad J (2000) Adsorption studies on Citrus reticulata (fruit peel of orange: removal and recovery of Ni(II) from electroplating wastewater. J Hazard Mater 79(1–2):117–131

    Article  CAS  Google Scholar 

  • Al-Rub FAA, El-Naas MH, Benyahia F, Ashour I (2004) Biosorption of nickel on blank alginate beads, free and immobilized algal cells. Process Biochem 39(11):1767–1773

    Article  Google Scholar 

  • Anjana K, Kaushik A, Kiran B, Nisha R (2007) Biosorption of Cr(VI) by immobilized biomass of two indigenous strains of cyanobacteria isolated from metal contaminated soil. J Hazard Mater 148(1–2):383–386

    Article  CAS  Google Scholar 

  • Annadurai G, Juang RS, Lee DJ (2002) Use of cellulose-based wastes for adsorption of dyes from aqueous solutions. J Hazard Mater 92(3):263–274

    Article  CAS  Google Scholar 

  • Arbanah M, Najwa MRM, Halim KHK (2012) Biosorption of Cr(III), Fe(II), Cu(II), Zn(II) ions from liquid laboratory chemical waste by Pleurotus ostreatus. Int J Biotechnol Well Ind 1(3):152–162

    CAS  Google Scholar 

  • Ashraf MA, Maah MJ, Yusoff I (2010) Study of mango biomass (Mangifera indica L.) as a cationic biosorbent. Int J Environ Sci Technol 7(3):581–590

    Article  CAS  Google Scholar 

  • Babel S, Kurniawan TA (2003) Low cost adsorbents for heavy metals uptake from contaminated water: a review. J Hazard Mater 97(1–3):219–243

    Article  CAS  Google Scholar 

  • Bai MT, Komali K, Venkateswarlu P (2010) Equilibrium, kinetic and thermodynamic studies on biosorption of copper and zinc from mixed solution by Erythrina variegata orientalis leaf powder. Ind J Chem Technol 17:346–355

    CAS  Google Scholar 

  • Bayramoglu G, Arica MA (2008) Removal of heavy mercury(II), cadmium(II) and zinc(II) metal ions by live and heat inactivated Lentinus edodes pellets. Chem Eng J 143(1–3):133–140

    Article  CAS  Google Scholar 

  • Bhatti HN, Mumtaz B, Hanif MA, Nadeem R (2007) Removal of Zn (II) ions from aqueous solution using Moringa oleifera Lam (horse radish tree) biomass. Process Biochem 42(4):547–553

    Article  CAS  Google Scholar 

  • Busari A, Chaiyut N, Ponpatcharasakul N, Artsalee P, Potisook S (2007) Factors affecting the removal of copper(II) and zinc(II) from aqueous solutions with clinoptilolite. J Res Eng Technol 4:1–17

    Google Scholar 

  • Busari A, Chaiyut N, Tapang K, Jaroensin S, Panphrom S (2012) Biosorption of heavy metals from aqueous solutions using water hyacinth as a low cost biosorbent. Civ Environ Res 2(2):17–24

    Google Scholar 

  • Cabuk A, Ilhan S, Filik C, Caliskan F (2005) Pb+2 biosorption by pretreated fungal biomass. Turk J Biol 29:23–28

    CAS  Google Scholar 

  • Cao YR, Liu Z, Cheng GL, Jing XB, Xu H (2010) Exploring single and multi-metal biosorption by immobilized spent Tricholoma lobayense using multi-step response surface methodology. Chem Eng J 164(1):183–195

    Article  CAS  Google Scholar 

  • Chen XC, Shi J, Chen YC, Xu XH, Xu SY, Wang YP (2006) Tolerance and biosorption of copper and zinc by Pseudomonas putida CZ1 isolated from metal polluted soil. Can J Microbiol 52(4):308–316

    Article  CAS  Google Scholar 

  • Dursun AY (2006) A comparative study on determination of the equilibrium, kinetic and thermodynamic parameters of biosorption of copper(II) and lead(II) ions onto pretreated Aspergillus niger. Biochem Eng J 28(12):187–195

    Article  CAS  Google Scholar 

  • Dursun AY, Uslu G, Tepe O, Cuci Y, Ekiz HI (2003) A comparative investigation on the bioaccumulation of metal ions by growing Rhizopus arrhizus and Aspergillus niger. Biochem Eng J 15(2):87–92

    Article  CAS  Google Scholar 

  • Hanif MA, Bhatti HN (2012) Bioremediation of nickel from wastewater using immobilized Phanerochaete chyrsosporium biomass. Int J Chem Biochem Sci 2:54–59

    Google Scholar 

  • Iqbal M, Saeed A, Zafar SI (2007) Hybrid biosorbent: an innovative matrix to enhance the biosorption of Cd+2 from aqueous solution. J Hazard Mater 148(1–2):47–55

    Article  CAS  Google Scholar 

  • Jnr MH, Spiff AI (2005) Effect of temperature on the sorption of lead(II) and cadmium(II) from aqueous solution by Caladium bicolor (Wild cocoyam) biomass. Electron J Biotechnol 8(2):162–169

    Article  CAS  Google Scholar 

  • Lisa N, Kanagaratnam B, Trevor M (2004) Biosorption of zinc from aqueous solutions using biosolids. Adv Environ Res 8(3–4):629–635

    Google Scholar 

  • Mukhopadhyay M, Noronha SB, Suraishkumar GK (2007) Kinetic modeling for the biosorption of copper by pretreated Aspergillus niger biomass. Biores Technol 98(9):1781–1787

    Article  CAS  Google Scholar 

  • Norton L, Baskaran K, Mckenzie T (2004) Biosorption of zinc from aqueous solution using biosolids. Adv Environ Res 8(3–4):629–635

    Article  CAS  Google Scholar 

  • Pan X, Jianlong W, Daoyong Z (2005) Biosorption of Pb(II) by Pleurotus ostreatus immobilized in calcium alginate Gel. Process Biochem 40(8):2799–2803

    Article  CAS  Google Scholar 

  • Rani MJ, Hemambika B, Hemapriya J, Kannan VR (2010) Comparative assessment of heavy metal removal by immobilized and dead bacterial cells: a biosorption approach. Afr J Environ Sci Technol 4(2):77–83

    Google Scholar 

  • Rostami KH, Joodaki MR (2002) Some studies of cadmium adsorption using Aspergillus niger, Penicillium austurianum, employing an airlift fermentor. Chem Eng J 89(1–3):239–252

    Article  CAS  Google Scholar 

  • Shafqat F, Bhatti HN, Hanif MA, Zubair A (2008) Kinetic and equilibrium studies of Cr(III) and Cr(IV) sorption from aqueous solutions using Rosa gruss an teplitz (Red rose) waste biomass. J Chil Chem Soc 53(4):1667–1672

    Article  CAS  Google Scholar 

  • Shah BA, Shah AV, Singh RR (2009) Sorption isotherms and kinetics of chromium uptake from wastewater using natural sorbent material. Int J Environ Sci Technol 5(3):353–360

    Google Scholar 

  • Souag R, Touaibia D, Benayada B, Boucenna A (2009) Adsorption of heavy metals (Cd, Zn and Pb) from water using keratin powder prepared from Algerian ship hoofs. Eur J Sci Res 35(3):416–425

    Google Scholar 

  • Vullo DL, Ceretti HM, Daniel MA, Ramirez SAM, Zalts A (2008) Cadmium, zinc and copper biosorption mediated by Pseudomonas veronii 2E. Biores Technol 99(13):5574–5581

    Article  CAS  Google Scholar 

  • Witek-Krowiak A, Szafran RG, Modelski S (2011) Biosorption of heavy metals from aqueous solutions onto peanut shell as a low-cost biosorbent. Desalination 265(1–3):126–134

    Article  CAS  Google Scholar 

  • Xiao F, Huang JCH (2009) Comparison of biosorbents with inorganic sorbents for removing copper (II) from aqueous solutions. J Environ Manag 90(10):3105–3109

    Article  CAS  Google Scholar 

  • Xue-jiang W, Si-qing X, Ling C, Jian-fu Z, Jean-marc C, Jaffrezic-renault N (2006) Biosorption of cadmium(II) and lead(II) ions from aqueous solution onto dried activated sludge. J Environ Sci 18(5):840–844

    Article  Google Scholar 

  • Zubair A, Bhatti HN, Hanif MA, Shafqat F (2008) Kinetic and equilibrium modeling for Cr(III) and Cr(VI) removal from aqueous solutions by Citrus reticulate waste biomass. Water Soil Pollut 191:305–318

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Dr. Haq Nwaz Bhatti, Associate Professor, Department of Chemistry and Biochemistry, University of Agriculture, Faisalabad, for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ashraf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashraf, A., Nadeem, R., Sharif, S. et al. Study of hybrid immobilized biomass of Pleurotus sajor-caju and Jasmine sambac for sorption of heavy metals. Int. J. Environ. Sci. Technol. 12, 717–724 (2015). https://doi.org/10.1007/s13762-013-0471-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-013-0471-1

Keywords

Navigation