Skip to main content
Log in

High-efficiency catalytic degradation of phenol based on the peroxidase-like activity of cupric oxide nanoparticles

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Based on the recently discovered peroxidase-like activity, cupric oxide nanoparticles with diameters about 6 nm were synthesized and used to remove phenol from aqueous solution. As a kind of peroxidase mimetic substance, cupric oxide nanoparticles can be used as a promising catalyst for the total oxidation of phenol in aqueous solutions by peroxidation, which therefore avoids the need of secondary treatments. The mechanism study suggested that cupric oxide nanoparticles could catalyze hydrogen peroxide to form hydroxyl free radicals, which were mainly responsible for the removal of phenol. The catalytic conditions for the phenol degradation were extensively optimized among a range of pH as well as initial concentration of catalyst, H2O2 and phenol. High degradation efficiency of phenol can be achieved in relatively wide pH range from 3 to 7. Under optimized conditions, phenol (0.25 g/l) can be eliminated completely in 35 min. It can be potentially applied in treating the industrial wastewaters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Barrault J, Abdellaoui M, Bouchoule C, Majeste A, Tatibouet JM, Louloudi A, Papayannakos N, Gangas NH (2000) Catalytic wet peroxide oxidation over mixed (al-fe) pillared clays. Appl Catal B Environ 27(4):L225–L230

    Article  CAS  Google Scholar 

  • Bornscheuer UT (2003) Immobilizing enzymes: how to create more suitable biocatalysts. Angew Chem Int Ed 42(29):3336–3337

    Article  CAS  Google Scholar 

  • Burleigh MC, Markowitz MA, Spector MS, Gaber BP (2002) Porous polysilsesquioxanes for the adsorption of phenols. Environ Sci Technol 36(11):2515–2518

    Article  CAS  Google Scholar 

  • Calleja G, Melero JA, Martinez F, Molina R (2005) Activity and resistance of iron-containing amorphous, zeolitic and mesostructured materials for wet peroxide oxidation of phenol. Water Res 39(9):1741–1750

    Article  CAS  Google Scholar 

  • Chedeville O, Debaccq M, Almanza MFA, Porte C (2007) Use of an ejector for phenol containing water treatment by ozonation. Sep Purif Technol 57(2):201–208

    Article  CAS  Google Scholar 

  • Chen H, Sayari A, Adnot A, Larachi F (2001) Composition-activity effects of Mn-Ce-O composites on phenol catalytic wet oxidation. Appl Catal B Environ 32(3):195–204

    Article  Google Scholar 

  • Chen W, Chen J, Liu AL, Wang LM, Li GW, Lin XH (2011) Peroxidase-like activity of cupric oxide nanoparticle. Chemcatchem 3(7):1151–1154

    Article  CAS  Google Scholar 

  • Chen W, Chen J, Feng YB, Hong L, Chen QY, Wu LF, Lin XH, Xia XH (2012) Peroxidase-like activity of water-soluble cupric oxide nanoparticles and its analytical application for detection of hydrogen peroxide and glucose. Analyst 137(7):1706–1712

    Article  CAS  Google Scholar 

  • Cheng J, Yu SM, Zuo P (2006) Horseradish peroxidase immobilized on aluminum-pillared interlayered clay for the catalytic oxidation of phenolic wastewater. Water Res 40(2):283–290

    Article  CAS  Google Scholar 

  • Dabrowski A, Podkoscielny P, Hubicki Z, Barczak M (2005) Adsorption of phenolic compounds by activated carbon - a critical review. Chemosphere 58(8):1049–1070

    Article  CAS  Google Scholar 

  • Dileo GJ, Neff ME, Savage PE (2007) Gasification of guaiacol and phenol in supercritical water. Energy Fuels 21(4):2340–2345

    Article  CAS  Google Scholar 

  • Duran N, Esposito E (2000) Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: a review. Appl Catal B Environ 28(2):83–99

    Article  CAS  Google Scholar 

  • Gao LZ, Zhuang J, Nie L, Zhang JB, Zhang Y, Gu N, Wang TH, Feng J, Yang DL, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2(9):577–583

    Article  CAS  Google Scholar 

  • Gonzalez PS, Agostini E, Milrad SR (2008) Comparison of the removal of 2,4-dichlorophenol and phenol from polluted water, by peroxidases from tomato hairy roots, and protective effect of polyethylene glycol. Chemosphere 70(6):982–989

    Article  CAS  Google Scholar 

  • Guo J, Al-Dahhan M (2003) Catalytic wet oxidation of phenol by hydrogen peroxide over pillared clay catalyst. Indust Eng Chem Res 42(12):2450–2460

    Article  CAS  Google Scholar 

  • Han YF, Phonthammachai N, Ramesh K, Zhong Z, White T (2008) Removing organic compounds from aqueous medium via wet peroxidation by gold catalysts. Environ Sci Technol 42(3):908–912

    Article  CAS  Google Scholar 

  • Hoshi M, Kogure M, Saitoh T, Nakagawa T (1997) Separation of aqueous phenol through polyurethane membranes by pervaporation. J Appl Polym Sci 65(3):469–479

    Article  CAS  Google Scholar 

  • Jiang HL, Tay JH, Maszenan AM, Tay STL (2006) Enhanced phenol biodegradation and aerobic granulation by two coaggregating bacterial strains. Environ Sci Technol 40(19):6137–6142

    Article  CAS  Google Scholar 

  • Joglekar HS, Samant SD, Joshi JB (1991) Kinetics of wet air oxidation of phenol and substituted phenols. Water Res 25(2):135–145

    Article  CAS  Google Scholar 

  • Kang N, Lee DS, Yoon J (2002) Kinetic modeling of fenton oxidation of phenol and monochlorophenols. Chemosphere 47(9):915–924

    Article  CAS  Google Scholar 

  • Kashif N, Ouyang F (2009) Parameters effect on heterogeneous photocatalysed degradation of phenol in aqueous dispersion of TiO2. J Environ Sci 21(4):527–533

    Article  CAS  Google Scholar 

  • Klibanov AM, Tu TM, Scott KP (1983) Peroxidase-catalyzed removal of phenols from coal-conversion waste-waters. Science 221(4607):259–260

    Article  CAS  Google Scholar 

  • Kurian M, Sugunan S (2006) Tert-butylation of phenol catalysed by metal exchanged iron pillared montmorillonites. Catal Commun 7(6):417–421

    Article  CAS  Google Scholar 

  • Li Z, Wu MH, Jiao Z, Bao BR, Lu SL (2004) Extraction of phenol from wastewater by n-octanoylpyrrolidine. J Hazard Mater 114(1–3):111–114

    Article  CAS  Google Scholar 

  • Li XY, Cui YH, Feng YJ, Xie ZM, Gu JD (2005) Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes. Water Res 39(10):1972–1981

    Article  CAS  Google Scholar 

  • Liu YJ, Jiang XZ (2005) Phenol degradation by a nonpulsed diaphragm glow discharge in an aqueous solution. Environ Sci Technol 39(21):8512–8517

    Article  CAS  Google Scholar 

  • Lu DL, Shao GC, Du D, Wang J, Wang LM, Wang WJ, Lin YH (2011) Enzyme entrapped nanoporous scaffolds formed through flow-induced gelation in a microfluidic filter device for sensitive biosensing of organophosphorus compounds. Lab Chip 11(3):381–384

    Article  CAS  Google Scholar 

  • Pacheco MJ, Morao A, Lopes A, Ciriaco L, Goncalves I (2007) Degradation of phenols using boron-doped diamond electrodes: a method for quantifying the extent of combustion. Electrochim Acta 53(2):629–636

    Article  CAS  Google Scholar 

  • Peng C, Jiang BW, Liu Q, Guo Z, Xu ZJ, Huang Q, Xu HJ, Tai RZ, Fan CH (2011) Graphene-templated formation of two-dimensional lepidocrocite nanostructures for high-efficiency catalytic degradation of phenols. Energy Environ Sci 4(6):2035–2040

    Article  CAS  Google Scholar 

  • Rokhina EV, Virkutyte J (2011) Environmental application of catalytic processes: heterogeneous liquid phase oxidation of phenol with hydrogen peroxide. Crit Rev Environ Sci Technol 41(2):125–167

    Article  CAS  Google Scholar 

  • Schmid A, Dordick JS, Hauer B, Kiener A, Wubbolts M, Witholt B (2001) Industrial biocatalysis today and tomorrow. Nature 409(6817):258–268

    Article  CAS  Google Scholar 

  • Schoemaker HE, Mink D, Wubbolts MG (2003) Dispelling the myths—biocatalysis in industrial synthesis. Science 299(5613):1694–1697

    Article  CAS  Google Scholar 

  • Ucun H, Yildiz E, Nuhoglu A (2010) Phenol biodegradation in a batch jet loop bioreactor (JLB): kinetics study and ph variation. Bioresour Technol 101(9):2965–2971

    Article  CAS  Google Scholar 

  • Vione D, Minero C, Maurino V, Carlotti AE, Picatonotto T, Pelizzetti E (2005) Degradation of phenol and benzoic acid in the presence of a TiO2-based heterogeneous photocatalyst. Appl Catal B Environ 58(1–2):79–88

    Article  CAS  Google Scholar 

  • Wang ZP, Cai WM, Hong XT, Zhao XL, Xu F, Cai CG (2005) Photocatalytic degradation of phenol in aqueous nitrogen-doped TiO2 suspensions with various light sources. Appl Catal B Environ 57(3):223–231

    Article  CAS  Google Scholar 

  • Zelmanov G, Semiat R (2008) Iron(3) oxide-based nanoparticles as catalysts in advanced organic aqueous oxidation. Water Res 42(1–2):492–498

    Article  CAS  Google Scholar 

  • Zhang JB, Zhuang J, Gao LZ, Zhang Y, Gu N, Feng J, Yang DL, Zhu JD, Yan XY (2008) Decomposing phenol by the hidden talent of ferromagnetic nanoparticles. Chemosphere 73(9):1524–1528

    Article  CAS  Google Scholar 

  • Zhang SX, Zhao XL, Niu HY, Shi YL, Cai YQ, Jiang GB (2009) Superparamagnetic Fe3O4 nanoparticles as catalysts for the catalytic oxidation of phenolic and aniline compounds. J Hazard Mater 167(1–3):560–566

    Article  CAS  Google Scholar 

  • Zhou CH, Tong DS, Bao M, Du ZX, Ge ZH, Li XN (2006) Generation and characterization of catalytic nanocomposite materials of highly isolated iron nanoparticles dispersed in clays. Topics in Catal 39(3–4):213–219

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support of the National Natural Science Foundation of China (21175023), the Natural Science Foundation of Fujian Province (2011J01034, 2012J06019), Science and Technology Planning Project of Fujian Province (2011Y0030), and the Program for New Century Excellent Talents in Fujian Province University (JA11102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, YB., Hong, L., Liu, AL. et al. High-efficiency catalytic degradation of phenol based on the peroxidase-like activity of cupric oxide nanoparticles. Int. J. Environ. Sci. Technol. 12, 653–660 (2015). https://doi.org/10.1007/s13762-013-0442-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-013-0442-6

Keywords

Navigation