Skip to main content

Advertisement

Log in

Characteristics and composition of the falling dust in urban environment

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

The monthly total amount of dust fall, as well as its chemical and physical characteristics, was systematically investigated in Shuwaikh city, Kuwait. Dust samples were collected on a monthly basis for the entire year of 2009 and analyzed in the laboratory for water-soluble and water-insoluble matter. Water-insoluble matter represented the major portion of the total annual dust. ANOVAs showed significant temporal variation in the concentration of dust fall over the months (p < 0.05). Higher dust deposits were encountered between June and August and ranged from 76.4 to 97.6 ± 2.5 (SD) ton km−2 month−1, where dusty winds and low humidity are a common attribute in such arid areas. The main three soluble matter species measured are nitrate, sulfate, and chloride, and sulfate was found to be the most abundant inorganic species, ranging from 0.72 ± 0.13 to 4.1 ± 0.3 ton km−2 month−1. Major insoluble matter species measured are ash, silica, combustible, and tarry. Ash, silica, and combustible account for 63, 19, and 17.8 % of total insoluble dust, and 58.4, 17.7, and 16.6 % of total dust, respectively. Particle size distribution was also investigated, and results showed that dust particles >7 μm were the highest concentration of falling dust. Metrological conditions were found to play a vital role in temporal variations in falling dust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baik NJ, Kim YP, Moon KC (1996) Visibility study in Seoul, 1993. Atmos Environ 30:2319–2328

    Article  CAS  Google Scholar 

  • Begum B, Kim E, Biswas SK, Hopke PK (2004) Investigation of sources of atmospheric aerosol at urban and semi-urban areas in Bangladesh. Atmos Environ 38:3025–3038

    Article  CAS  Google Scholar 

  • Canagaratna M, Jayne J, Ghertner D, Herndon S, Shi Q, Jimenez J, Silva P, Williams P, Lanni T, Drewnick F, Demerjian K, Kolb C, Worsnop D (2004) Chase studies of particulate emissions from in-use New York city vehicles. Aerosol Sci Technol 38:555–573

  • Charlson RJ, Schwartz SE, Hales JM, Cess RD, Coakley JA, Hansen JE, Hofmann DJ (1992) Climate forcing by anthropogenic aerosols. Science 255:423–430

    Article  CAS  Google Scholar 

  • Chate DM, Pranesha TS (2004) Field studies of scavenging of aerosols by rain events. J Aerosol Sci 35:695–706

    Article  CAS  Google Scholar 

  • Chou CCK, Chen TK, Huang SH, Liu SC (2003) Radiative absorption capability of Asian dust with black carbon contamination. Geophys Res Lett 30:1616

    Article  Google Scholar 

  • Chung Y, Kim H, Dulam J, Harris J (2003) On heavy dust fall observed with explosive sandstorms in Chongwon–Chongju, Korea in 2002. Atmos Environ 37:3425–3433

    Article  CAS  Google Scholar 

  • Crabtree GW (2005) Dust fall on the southern high plains of Texas: Faculty of Texas Tech University in partial fulfillment of the requirements for the Degree of Master of Science

  • Dentener F (1996) Role of mineral aerosol as a reactive surface in the global troposphere. J Geophys Res 101(D17):22869–22890

    Article  CAS  Google Scholar 

  • Eriksson E (1959) The yearly circulation of chlorine and sulfur in nature: meteorological, geochemical and pedological implications. Tellus 11:375–403

    Article  CAS  Google Scholar 

  • Fan X, Okada K, Niimura N, Kai K, Arao K, Shi G, Qin Y, Mitsuta Y (1996) Mineral particles collected in China and Japan during the same Asian dust-storm event. Atmos Environ 30:347–351

    Article  CAS  Google Scholar 

  • Fenter FF, Caloz F, Rossi MJ (1995) Experimental evidences for the efficient “dry deposition” of nitric acid on calcite. Atmos Environ 29:3365–3372

    Article  CAS  Google Scholar 

  • Fruin S, Winer A, Rodes C (2004) Black carbon concentrations in California vehicles and estimation of in-vehicle diesel exhaust particulate matter exposures. Atmos Environ 38(25):4123–4133

    Google Scholar 

  • Gao Y, Arimoto R, Duce RA, Zhang XY, Zhang GY, An ZS, Chen LQ, Zhou MY, Gu DY (1997) Temporal and spatial distribution of dust and its deposition to the China Sea. Tellus B 49:172–189

    Article  Google Scholar 

  • Gwilliam K, Kojima M, Johnson T (2004) Reducing air pollution from urban transport. The World Bank, Washington, DC

    Google Scholar 

  • Harrison RM, Jones M, Collins G (1999) Measurements of the physical properties of particles in the urban atmosphere. Atmos Environ 33:309–321

    Article  CAS  Google Scholar 

  • Hien PD, Binh NT, Truong Y, Ngo NT, Sieu LN (2001) Comparative receptor modeling study of TSP, PM2 and PM10 in Ho Chi Minh City. Atmos Environ 35:2669–2678

    Article  CAS  Google Scholar 

  • Hien PD, Bac VT, Lam DT, Thinh NTHT (2004) PMF receptor modeling of fine and coarse PM10 in air masses governing monsoon conditions in Hanoi, northern Vietnam. Atmos Environ 38:189–201

    Article  CAS  Google Scholar 

  • Hoffmann MR (1986) On the kinetics and mechanism of oxidation of aquated sulfur dioxide by ozone. Atmos Environ 20:1145–1154

    Article  CAS  Google Scholar 

  • Hussein T, Puustinen A, Aalto PP, Mäkelä JM, Hämeri K, Kulmala M (2004) Urban aerosol number size distributions. Atmos Chem Phys 4:391–411

    Article  CAS  Google Scholar 

  • Iwasaka Y, Shi G, Shen Z, Kim Y, Trochkine D, Matsuki A, Zhang D, Shibata T, Nagatani M, Nakata H (2003) Nature of atmospheric aerosols over the desert areas in the Asian continent: chemical state and number concentration of particles measured at Dunhuang, China. Water Air Soil Pollut Focus 3(2):129–145

    Article  CAS  Google Scholar 

  • Johansson LS, Tullin C, Leckner B, Sjovall P (2003) Particle emissions from biomass combustion in small combustors. Biomass Bioenergy 25(12):435–446

    Article  CAS  Google Scholar 

  • Krueger BJ, Grassian VH, Cowin JP, Laskin A (2004) Heterogeneous chemistry of individual mineral dust particles from different dust source regions: the importance of particle mineralogy. Atmos Environ 38:6253–6261

    Article  CAS  Google Scholar 

  • Latif M, Rozali M (1991) Dust fall at air Keroh (Melaka) and Teluk Kalung (Terengganu) industrial areas. Malays J Anal Sci 5:137–146

    Google Scholar 

  • Li W, Shao L (2009) Observation of nitrate coatings on atmospheric mineral dust particles. Atmos Chem Phys 9(6):1863–1871

    Article  Google Scholar 

  • Li X, Guo X, Liu X, Liu C, Zhang S, Wang Y (2009) Distribution and sources of solvent extractable organic compounds in PM2.5 during 2007 Chinese Spring Festival in Beijing. J Environ Sci 21(2):142–149

    Article  CAS  Google Scholar 

  • Li W, Zhang D, Shao L, Zhou S, Wang W (2011) Individual particle analysis of aerosols collected under haze and non-haze conditions at a high-elevation mountain site in the North China plain. Atmos Chem Phys 11(22):11733–11744

    Article  CAS  Google Scholar 

  • Lighty JS, Veranth JM, Sarofim AF (2000) Combustion aerosols: factors governing their size and composition and implications to human health. J Air Waste Manag Assoc 50:1565–1618

    Article  CAS  Google Scholar 

  • Liu LY, Brauning A, Zhand Z, Dong Z, Esper J (2004) Dust fall in China’s western loess plateau as influenced by dust storm and haze events. Atmos Environ 38:1699–1703

    Article  CAS  Google Scholar 

  • Lodge JP Jr (1988) Methods of air sampling and analysis, 3rd edn. CRC Press, Boca Raton, FL, pp 440–443

    Google Scholar 

  • Lyons TJ, Scott WD (1990) Principles of air pollution meteorology. Belhaven Press, London

    Google Scholar 

  • Martin LR (1984) Kinetic studies of sulfite oxidation in aqueous solution, SO2, NO, NO2 oxidation mechanisms. In: Calvert JG (ed) Atmospheric considerations. Butterworth Press, Boston, pp 63–100

    Google Scholar 

  • Maxwell-Meier K, Weber R, Song C, Orsini D, Ma Y, Carmichael GR, Streets DG (2004) Inorganic composition of fine particles in mixed mineral dust-pollution plumes observed from airborne measurements during ACE-Asia. J Geophys Res 109:D19S07

    Google Scholar 

  • McArdle JV, Hoffmann MR (1983) Kinetics and mechanism of the oxidation of aquated sulfur dioxide by hydrogen peroxide at low pH. J Phys Chem 87:5425–5429

    Article  CAS  Google Scholar 

  • McInnes LM, Covert DS, Quinn PK, Germani MS (1994) Measurements of chloride depletion and sulfur enrichment in individual sea-salt particles collected from the remote marine boundary layer. J Geophys Res 99:8257–8268

    Article  CAS  Google Scholar 

  • Mirme A, Ruuskanen J (1996) Comparison of aerosol measurements in urban environment. Aerosol Sci Technol 27:S23–S24

    Article  Google Scholar 

  • Modaihsh AS (1997) Characteristics and composition of the falling dust sediments on Riyadh city, Saudi Arabia. J Arid Environ 36:211–223

    Article  Google Scholar 

  • Nicholson KW (1988) The dry deposition of small particles: a review of experimental measurements. Atmos Environ 22:2653–2666

    Article  CAS  Google Scholar 

  • Niemi JV, Tervahattu H, Vehkamäki H, Kulmala M, Koskentalo T, Sillanpää M, Rantamäki M (2004) Characterization and source identification of a fine particle episode in Finland. Atmos Environ 38:5003–5012

    Article  CAS  Google Scholar 

  • Nishikawa M, Kanamori S, Kanamori N, Mizoguchi T (1991) Kosa aerosol as eolian carrier of anthropogenic material. Sci Total Environ 107:13–27

    Google Scholar 

  • Naddafi K, Nabizadeh R, Soltanianzadeh Z, Ehrampoosh MH (2006) Evaluation of dustfall in the air of Yazd. Iran J Environ Health Sci Eng 3(3):161–168

    Google Scholar 

  • Norela S, Nurfatiha M, Maimon A, Ismail B (2009) Wet deposition in the residential area of the Nilai Industrial Park in Negeri Sembilan, Malaysia. World Appl Sci J 7:170–179

    CAS  Google Scholar 

  • Ntziachristos L, Samaras Z, Eggleston S, Goriben N, Hassel D, Hickman A, Joumard R, Rijkeboer R, White L, Zierock K (2000) COPERT III computer programme to calculate emissions from road transport: methodology and emission factors (version 2.1). In: Technical report prepared by the European Environment Agency, Copenhagen, Report 49. http://reports.eea.europa.eu/Technical_report_No_49/en/tech49.pdf

  • Offer ZY, Goossen D (2001) Ten years of Aeolian dust dynamics in a desert region (Negev desert, Israel): analysis of airborne dust events. J Arid Environ 47(2):211–249

    Article  Google Scholar 

  • Okada K, Naruse H, Tanaka T, Nemoto O, Iwasaka Y, Wu P, Ono A, Duce R, Uematsu M, Merrill J (1990) X-ray spectrometry of individual Asian dust-storm particles over the Japanese islands and the North Pacific Ocean. Atmos Environ 24:1369–1378

    Article  Google Scholar 

  • Pandey SK, Tripathi BD, Mishra VK (2008) Dust deposition in a sub-tropical opencast coalmine area, India. J Environ Manag 86(1):132–138

    Article  CAS  Google Scholar 

  • Parungo F, Kim Y, Zhu C, Harris J, Schnell R, Li X, Yang D, Fang X, Yan P, Yu X Zhou M, Chen Z, Qian F, Park K (1996) Asian dust storms and their effects on radiation and climate. Part II. STC Technical Report 2959, pp 34

  • Penttinen P, Timonen KL, Tiittanen P, Mirme A, Ruuskanen J, Pekkanen J (2001) Number concentration and size of particles in urban air: effects on spirometric lung function in adult asthmatic subjects. Environ Health Perspect 109:319–323

    Article  CAS  Google Scholar 

  • Peters A, Wichmann HE, Tuch T, Heinrich J, Heyder J (1997) Respiratory effects are associated with the number of ultrafine particles. Am J Respir Crit Care Med 155:1376–1383

    Article  CAS  Google Scholar 

  • Pope CA (2000) Review: epidemiological basis for particulate air pollution health standards. Aerosol Sci Technol 32:4–14

    Article  CAS  Google Scholar 

  • Quan H (1995) Dust transport and modification. Doctoral degree dissertation of Saitama University, Saitama, pp 49–90

    Google Scholar 

  • Reheis MC, Kihl R (1995) Dust deposition in Southern Nevada and California, 1984–1989: relations to climate, source area and source lithology. J Geophys Res 100:8893–8918

    Article  CAS  Google Scholar 

  • Samet JM, Dominici F, Curriero FC, Coursac I, Zeger SL (2000) Fine particulate air pollution and mortality in 20 US Cities, 1987–1994. N Engl J Med 343:1742–1749

    Article  CAS  Google Scholar 

  • Seinfeld JH (1986) Atmospheric chemistry and physics of air pollution. Wiley, New York, p 738

    Google Scholar 

  • Sheng N, Tang U (2013) Risk assessment of traffic-related air pollution in a world heritage city. Int J Environ Sci Technol 10:11–18

    Article  CAS  Google Scholar 

  • Shi JP, Harrison RM (1999) Investigation of ultrafine particle formation during diesel exhaust dilution. Environ Sci Technol 33:3730–3736

    Article  CAS  Google Scholar 

  • Stanier CO, Khlystov AY, Pandis SN (2004) Ambient aerosol size distributions and number concentrations measured during the Pittsburgh Air Quality Study (PAQS). Atmos Environ 38:3275–3284

    Article  CAS  Google Scholar 

  • Ta W, Xiao H, Qu J, Xiao Z, Yang G, Wang T, Zhang X (2004) Measurements of dust deposition in Gansu Province, China, 1986–2000. Geomorphology 57:41–51

    Article  Google Scholar 

  • Tang Y (2004) Three-dimensional simulations of inorganic aerosol distributions in East Asia during spring 2001. J Geophys Res 109:D19S2

    Google Scholar 

  • Tang UW, Wang ZS (2006) Determining gaseous emission factors and driver's particle exposures during traffic congestion by vehicle-following measurement techniques. J Air Waste Manag Assoc 56:1532–1539

    Google Scholar 

  • Tang UW, Wang ZS (2007) Influences of urban forms on traffic-induced noise and air pollution: Results from a modelling system. Environ Model Softw 22:1750–1764

    Google Scholar 

  • Tiitta P, Raunemaa T, Tissari J, Yli-Tuomi T, Leskinen A, Kukkonen J, Harkonen J, Karppinen A (2002) Measurements and modeling of PM2.5 concentrations near a major road in Kuopio, Finland. Atmos Environ 36:4057–4068

    Article  CAS  Google Scholar 

  • Tripathi BD, Tripathi A, Mishra K (1991) Atmospheric dust fall deposits in Varanasi city. Atmos Environ B 25(1):109–112

    Article  Google Scholar 

  • Tuch TM, Wehner B, Pitz M, Cyrys J, Heinrich J, Kreyling WG, Wichmann HE, Wiedensohler A (2003) Long-term measurements of size-segregated ambient aerosol in two German cities located 100 km apart. Atmos Environ 37:4687–4700

    Article  CAS  Google Scholar 

  • Väkevä M, Hämeri K, Puhakka T, Nilsson ED, Hohti H, Mäkelä JM (2000) Effects of meteorological processes on aerosol particle size distribution in an urban background area. J Geophys Res Atmos 105:9807–9821

    Article  Google Scholar 

  • Wang Y, Zhuang G, Sun Y, An Z (2005) Water-soluble part of the aerosol in the dust storm season-evidence of the mixing between mineral and pollution aerosols. Atmos Environ 39:7020–7029

    Article  CAS  Google Scholar 

  • Wehner B, Wiedensohler A (2003) Long term measurements of submicrometer urban aerosols: statistical analysis for correlations with meteorological conditions and trace gases. Atmos Chem Phys 3:867–879

    Article  CAS  Google Scholar 

  • Woo KS, Chen DR, Pui DYH, McMurry PH (2001) Measurement of Atlanta aerosol size distributions: observations of ultrafine particle events. Aerosol Sci Technol 34:75–87

    Article  CAS  Google Scholar 

  • Yadav S, Rajamani V (2006) Air quality and trace metal chemistry of different size fractions of aerosols in N-NW India-implications for source diversity. Atmos Environ 40(4):698–712

    Article  CAS  Google Scholar 

  • Yang D, Ji X, Xu X, Fu J, Wen Y (1991) An analysis of a sandstorm weather. Acta Meteorologica Sinica 49:334–342 (in Chinese)

    Google Scholar 

  • Yang CY, Chen YS, Chiu HF, Goggins WB (2005) Effects of Asian dust storm events on daily stroke admissions in Taipei, Taiwan. Environ Res 99:79–84

    Article  CAS  Google Scholar 

  • Zhang D (1996) Features of nitrate-containing particles in urban atmosphere over Beijing. Scientia Atmospherica Sinica 20:408–415

    Google Scholar 

  • Zhang X, Gong S, Shen Z, Mei F, Xi X, Liu L, Zhou Z, Wang D, Wang Y, Cheng Y (2003) Characterization of soil dust aerosol in China and its transport and distribution during 2001 ACE-Asia: 1. Network observations. J Geophys Res 108:4261–4274

    Article  Google Scholar 

  • Zheng M, Wana TSM, Fang M, Wang F (1997) Characterization of the nonvolatile organic compounds in the aerosols of Hong Kong-identification, abundance and origin. Atmos Environ 31(2):227–237

    Article  CAS  Google Scholar 

  • Zhou M, Chen Z, Huang R, Wang Q, Arimoto R, Parungo F, Lenschow D, Okada K, Wu P (1994) Effects of two dust storms on solar radiation in the Beijing–Tianjin area. Geophys Res Lett 21:2697–2700

    Article  Google Scholar 

  • Zhuang H, Chan CK (1997) Size distribution of inorganic aerosols at a coastal site. J Aerosol Sci 28:S213–S214

    Google Scholar 

  • Ziomas IC, Melas D, Zerefos ChS, Bais AF (1995) Forecasting peak pollutant levels from meteorological variables. Atmos Environ 29:3703–3711

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank Kuwait University and KUEPA for dust characterization and continuous support through the course of study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. AL-Harbi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

AL-Harbi, M. Characteristics and composition of the falling dust in urban environment. Int. J. Environ. Sci. Technol. 12, 641–652 (2015). https://doi.org/10.1007/s13762-013-0440-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-013-0440-8

Keywords

Navigation