Maxwell–Stefan based modelling of ion exchange systems containing common species (Cd2+, Na+) and distinct sorbents (ETS-4, ETS-10)

  • P. F. Lito
  • J. P. S. Aniceto
  • C. M. SilvaEmail author
Original Paper


Cadmium(II) is a toxic hazardous cation, whose presence in the environment causes great concern because of its bioaccumulation in organisms and bioamplification along food chain. Hence, the removal of cadmium compounds from industrial waters and wastewaters is particularly essential, which requires intensive experimental and modelling studies to deal with the problem. In this work, the ion exchange of Cd2+ ions from aqueous solution using microporous titanosilicates (ETS-4 and ETS-10) has been modelled using adapted Maxwell–Stefan equations for the ions transport inside the sorbent particles. The fundamentals of the Maxwell–Stefan equations along with correlations for the convective mass transfer coefficients have been used with advantage to reduce the number of model parameters. In the whole, the model was able to represent successfully the kinetic behaviour of 11 independent and very distinct curves of both studied systems (Cd2+/Na+/ETS-4 and Cd2+/Na+/ETS-10). The predictive capability of the model has been also shown, since several uptake curves were accurately predicted with parameters fitted previously to different sets of experimental data.


Cadmium(II) ETS-4 ETS-10 Ion exchange Maxwell–Stefan Modelling 



Patrícia F. Lito wishes to thank Fundação para a Ciência e Tecnologia (Portugal) for the Grant (SFRH/BPD/63214/2009) provided for this study.


  1. Armenante PM, Kirwan DJ (1989) Mass-transfer to microparticles in agitated systems. Chem Eng Sci 44(12):2781–2796CrossRefGoogle Scholar
  2. Barreira LD, Lito PF, Antunes BM, Otero M, Lin Z, Rocha J, Pereira E, Duarte AC, Silva CM (2009) Effect of pH on cadmium(II) removal from aqueous solution using titanosilicate ETS-4. Chem Eng J 155(3):728–735CrossRefGoogle Scholar
  3. Camarinha ED, Lito PF, Antunes BM, Otero M, Lin Z, Rocha J, Pereira E, Duarte AC, Silva CM (2009) Cadmium(II) removal from aqueous solution using microporous titanosilicate ETS-10. Chem Eng J 155(1–2):108–114CrossRefGoogle Scholar
  4. Chanda M, Rempel GL (1995) Sorption of sulfide on a macroporous, quaternized poly(4-vinyl pyridine) in alkaline medium. React Polym 24(3):203–212CrossRefGoogle Scholar
  5. Choi JH, Kim SD, Kwon YJ, Kim WJ (2006) Adsorption behaviors of ETS-10 and its variant, ETAS-10 on the removal of heavy metals, Cu2+, Co2+, Mn2+ and Zn2+ from a waste water. Microporous Mesoporous Mater 96(1–3):157–167CrossRefGoogle Scholar
  6. Cincotti A, Mameli A, Locci AM, Orru R, Cao G (2006) Heavy metals uptake by Sardinian natural zeolites: experiment and modeling. Ind Eng Chem Res 45(3):1074–1084CrossRefGoogle Scholar
  7. Clark RB, Frid C, Attrill M (2001) Marine pollution. Oxford press, OxfordGoogle Scholar
  8. Dabrowski A, Hubicki Z, Podkoscielny P, Robens E (2004) Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere 56(2):91–106CrossRefGoogle Scholar
  9. Dolgonosov AM, Khamizov RK, Krachak AN, Prudkovsky AG (1995) Macroscopic model for multispecies ion-exchange kinetics. React Funct Polym 28(1):13–20CrossRefGoogle Scholar
  10. Ferreira TR, Lopes CB, Lito PF, Otero M, Lin Z, Rocha J, Pereira E, Silva CM, Duarte A (2009) Cadmium(II) removal from aqueous solution using microporous titanosilicate ETS-4. Chem Eng J 147(2–3):173–179CrossRefGoogle Scholar
  11. Graham EE, Dranoff JS (1982a) Application of the Stefan–Maxwell equations to diffusion in ion-exchangers. 1. Theory. Ind Eng Chem Fundam 21(4):360–365CrossRefGoogle Scholar
  12. Graham EE, Dranoff JS (1982b) Application of the Stefan–Maxwell equations to diffusion in ion-exchangers. 2. Experimental results. Ind Eng Chem Fundam 21(4):365–369CrossRefGoogle Scholar
  13. Helfferich F (1995) Ion exchange. Dover, New YorkGoogle Scholar
  14. Hogendoorn JA, AJVd Veen, JHGVd Stegen, Kuipers JAM, Versteeg GF (2001) Application of the Maxwell–Stefan theory to the membrane electrolysis process: model development and simulation. Comput Chem Eng 25:1251–1265CrossRefGoogle Scholar
  15. Jackson R (1977) Transport in porous catalysts. Elsevier, AmsterdamGoogle Scholar
  16. Kraaijeveld G, Sumberova V, Kuindersma S, Wesselingh H (1995) Modeling electrodialysis using the Maxwell–Stefan description. Chem Eng J Biochem Eng J 57(2):163–176CrossRefGoogle Scholar
  17. Krishna R, Wesselingh JA (1997) Review article number 50—the Maxwell–Stefan approach to mass transfer. Chem Eng Sci 52(6):861–911CrossRefGoogle Scholar
  18. Kulov NN, Nikolaishvili EK, Barabash VM, Braginski LN, Malyusov VA, Zhavoronkov NM (1983) Dissolution of solid particles suspended in agitated vessels. Chem Eng Commun 21(4–6):259–271CrossRefGoogle Scholar
  19. Lito PF, Silva CM (2008) Comparison between Maxwell–Stefan and Nernst–Planck equations to describe ion exchange in microporous materials. Defect Diffus Forum 273–276:776–781Google Scholar
  20. Lito PF, Cardoso SP, Loureiro JM, Silva CM (2012). Ion-exchange equlibria and kinetics. In: Inamuddin S, Luqman M (eds) Ion-exchange technology: theory, materials and applications, chap 3, pp 51–120. Springer, BerlinGoogle Scholar
  21. Lopes CB, Otero M, Coinbra J, Pereira E, Rocha J, Lin Z, Duarte A (2007) Removal of low concentration Hg2+ from natural waters by microporous and layered titanosilicates. Micropor Mesopor Mat 103(1–3):325–332CrossRefGoogle Scholar
  22. Lopes CB, Otero M, Lin Z, Silva CM, Rocha J, Pereira E, Duarte AC (2009) Removal of Hg2+ ions from aqueous solution by ETS-4 microporous titanosilicate - Kinetic and equilibrium studies. Chem Eng J 151(1–3):247–254CrossRefGoogle Scholar
  23. Lito PF, Aniceto JPS, Silva CM (2013) Modelling ion exchange kinetics in zeolyte-type materials using Maxwell–Stefan approach. Desalination Water Treat. doi: 10.1080/19443994.2013.815682 Google Scholar
  24. Lv L, Wang K, Zhao XS (2007) Effect of operating conditions on the removal of Pb2+ by microporous titanosilicate ETS-10 in a fixed-bed column. J Colloid Interface Sci 305(2):218–225CrossRefGoogle Scholar
  25. Miller SA, Amber CM, Bennet RC, Dahlstrom DA, Darji JD, Emmet RC, Gray JB, Gurnham CF, Jacobs LJ, Klepper RP, Michalson AW, Oldshue JY, Silverblatt CE, Smith JC, Todd DB (1984) Liquid–solid systems. In: Perry RH, Green D (eds) Perry’s chemical engineers’ handbook. McGrow-Hill, SingaporeGoogle Scholar
  26. Misic DM, Sudo Y, Suzuki M, Kawazoe K (1982) Liquid-to-particle mass-transfer in a stirred batch adsorption tank with non-linear isotherm. J Chem Eng Jpn 15(1):67–70CrossRefGoogle Scholar
  27. Økland TE, Wilhelmsen E, Solevåg Ø (2005) A study of the priority substances of the Water Framework Directive, monitoring and need for screening. Bergfald & Co., NorwayGoogle Scholar
  28. Otero M, Lopes CB, Coimbra J, Ferreira TR, Silva CM, Lin Z, Rocha J, Pereira E, Duarte AC (2009) Priority pollutants (Hg2+ and Cd2+) removal from water by ETS-4 titanosilicate. Desalination 249(2):742–747CrossRefGoogle Scholar
  29. Patzay G (1995) A simplified numerical solution method for the Nernst–Planck multicomponent ion exchange kinetics model. React Funct Polym 27(1):83–89CrossRefGoogle Scholar
  30. Pinto NG, Graham EE (1987) Characterization of ionic diffusivities in ion-exchange resins. Ind Eng Chem Res 26(11):2331–2336CrossRefGoogle Scholar
  31. Rodriguez JF, Valverde JL, Rodrigues AE (1998) Measurements of effective self-diffusion coefficients in a gel-type cation exchanger by the zero-length-column method. Ind Eng Chem Res 37(5):2020–2028CrossRefGoogle Scholar
  32. Rodriguez JF, de Lucas A, Leal JR, Valverde JL (2002) Determination of intraparticle diffusivities of Na+/K+ in water and water/alcohol mixed solvents on a strong acid cation exchanger. Ind Eng Chem Res 41(12):3019–3027CrossRefGoogle Scholar
  33. Samson E, Marchand J (1999) Numerical solution of the extended Nernst–Planck model. J Colloid Interface Sci 215(1):1–8CrossRefGoogle Scholar
  34. Schiesser WE (1991) The numerical method of lines. Academic Press, USAGoogle Scholar
  35. Siegel FR (2002) Environmental geochemistry of potentially toxic metals. Springer, BerlimCrossRefGoogle Scholar
  36. Silva CM, Lito PF (2007) Application of the Maxwell–Stefan approach to ion exchange in microporous materials. Batch process modelling. Chem Eng Sci 62(23):6939–6946CrossRefGoogle Scholar
  37. Slater MJ (1991) Principles of ion exchange technology. Butterworth-Heinemann, Great BritainGoogle Scholar
  38. Smith TG, Dranoff JS (1964) Film diffusion-controlled kinetics in binary ion exchange. Ind Eng Chem Fundam 3(3):195–200CrossRefGoogle Scholar
  39. Treybal RE (1981) Mass-transfer operations. McGraw-Hill International Editions, SingaporeGoogle Scholar
  40. Valverde JL, De Lucas A, Carmona M, Gonzalez M, Rodriguez JF (2004) A generalized model for the measurement of effective diffusion coefficients of heterovalent ions in ion exchangers by the zero-length column method. Chem Eng Sci 59(1):71–79CrossRefGoogle Scholar
  41. van der Stegen JHG, van der Veen AJ, Weerdenburg H, Hogendoorn JA, Versteeg GF (1999) Application of the Maxwell–Stefan theory to the transport in ion-selective membranes used in the chloralkali electrolysis process. Chem Eng Sci 54(13–14):2501–2511CrossRefGoogle Scholar
  42. Varshney KG, Pandith AH (1999) Forward and reverse ion-exchange kinetics for some alkali and alkaline earth metal ions on amorphous zirconium(IV) aluminophosphate. Langmuir 15(22):7422–7425CrossRefGoogle Scholar
  43. Varshney KG, Gupta PA, Tayal N (2003) Kinetics of ion exchange of alkaline earth metal ions on, acrylamide cerium(IV) phosphate: a fibrous ion exchanger. Colloids Surf B Biointerfaces 28(1):11–16CrossRefGoogle Scholar
  44. Wesselingh JA, Vonk P, Kraaijeveld G (1995) Exploring the Maxwell–Stefan description of ion-exchange. Chem Eng J Biochem Eng J 57(2):75–89CrossRefGoogle Scholar

Copyright information

© Islamic Azad University (IAU) 2013

Authors and Affiliations

  1. 1.CICECO/Department of ChemistryUniversity of AveiroAveiroPortugal

Personalised recommendations