Advertisement

Metal ion remediation by polyamidoamine dendrimers: a comparison of metal ion, oxidation state, and titania immobilization

  • V. A. Castillo
  • M. A. Barakat
  • M. H. Ramadan
  • H. L. Woodcock
  • J. N. Kuhn
Original Paper

Abstract

The exceptional ability of dendrimers to coordinate metal ions yields the potential for many applications including wastewater remediation, which is the focus of this study. Here, the comparison of metal ion removal rate from simulated wastewater by generation 4 dendrimers with external hydroxyl functional groups (G4-OH) is evaluated for Ni2+, Fe2+, and Fe3+ ions. Ni2+ to amine complexation occurred more rapidly than Fe3+, which was more rapid than Fe2+ complexation. These results indicate that both charge density and d-electron configuration are important toward the chelation rate. The impact of both factors is discussed in light of existing models in which precursor aquation rates have been proposed as a key intermediate step. Additionally, the application of the dendrimers as chelation agents is further advanced by immobilizing the dendrimer to titania and re-evaluating its chelation ability for Ni2+ removal. The dendrimer immobilization decreased the pseudo-first-order rate coefficient for Ni2+—amine complexation at a pH of 7 by a factor of 7.5. This result is significant as it suggests that mass transfer becomes important following immobilization of the dendrimer to titania.

Keywords

Wastewater remediation Polyamidoamine dendrimer Iron Nickel Chelation 

Notes

Acknowledgments

The authors gratefully acknowledge funding through a partnership with KAU under Grant number 2107105600. We thank the Florida Center of Excellence for Drug Discovery and Innovation for use facilities.

References

  1. Alexeev OS, Siani A, Lafaye G, Williams CT, Ploehn HJ, Amiridis MD (2006) EXAFS characterization of dendrimer-Pt nanocomposites used for the preparation of Pt/ç-Al2O3 catalysts. J Phys Chem B 110:24903–24914Google Scholar
  2. Astruc D, Boisselier B, Ornelas C (2010) Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chem Rev 110:1857–1959CrossRefGoogle Scholar
  3. Balogh L, Tomalia DA (1998) Poly(amidoamine) dendrimer-templated nanocomposites. 1. Synthesis of zerovalent copper nanoclusters. J Am Chem Soc 20:7355–7356CrossRefGoogle Scholar
  4. Barakat MA, Ramadan MH, Al-Ghamdi M, Al-Garney S, Woodcock HL, Kuhn JN (2013) Remediation of Cu(II), Ni(II), and Cr(III) ions from simulated wastewater by dendrimer/titania composites. J Environ Manag 117:50–57CrossRefGoogle Scholar
  5. Bronstein LM, Shifrina ZB (2011) Dendrimers as encapsulating, stabilizing, or directing agents for inorganic nanoparticles. Chem Rev 111:5301–5344CrossRefGoogle Scholar
  6. Cahill BP, Papastavrou G, Koper GJM, Borkovec M (2008) Adsorption of poly(amido amine) (PAMAM) dendrimers on silica: importance of electrostatic three-body attraction. Langmuir 24:465–473CrossRefGoogle Scholar
  7. Castillo VA, Kuhn JN (2012) Role of the Ni:Fe ratio in ethylene hydrogenation activity for silica-supported Ni–Fe clusters prepared by dendrimer-templating. J Phys Chem C 116:8627–8633CrossRefGoogle Scholar
  8. Crump CJ, Gilbertson JD, Chandler BD (2008) CO oxidation and toluene hydrogenation by Pt/TiO2 catalysts prepared from dendrimer encapsulated nanoparticle precursors. Top Catal 49:233–240CrossRefGoogle Scholar
  9. Deutsch DS, Lafaye G, Liu D, Chandler BD, Williams CT, Amiridis MD (2004) Decomposition and activation of Pt-dendrimer nanocomposites on a silica support. Catal Lett 97(3–4):139–143CrossRefGoogle Scholar
  10. Deutsch DS, Siani A, Fanson PT, Hirata H, Matsumoto S, Williams CT, Amiridis MD (2007) FT-IR investigation of the thermal decomposition of poly(amidoamine) dendrimers and dendrimer-metal nanocomposites supported on Al2O3 and ZrO2. J Phys Chem C 111:4246–4255CrossRefGoogle Scholar
  11. Diallo MS, Balogh L, Shafagati A, Goddard WA III, Tomalia DA (1999) Poly(amidoamine) dendrimers: a new class of high capacity chelating agents for Cu(II) ions. Environ Sci Technol 33:820–824CrossRefGoogle Scholar
  12. Diallo MS, Christie S, Swaminathan P, Balogh L, Shi X, Um W, Papelis C, Goddard WA III, Johnson JH Jr (2004) Dendritic chelating agents. 1. Cu(II) binding to ethylene diamine core poly(amidoamine) dendrimers in aqueous solutions. Langmuir 20:2640–2651CrossRefGoogle Scholar
  13. Diallo MS, Christie S, Swaminathan P, Johnson JH Jr, Goddard WA III (2005) Dendrimer enhanced ultrafiltration. 1. Recovery of Cu(II) from aqueous solutions using PAMAM dendrimers with ethylene diamine core and terminal NH2 groups. Environ Sci Technol 39:1366–1377CrossRefGoogle Scholar
  14. Douglas BE, McDaniel DH, Alexander JJ (1983) Concepts and models of inorganic chemistry, 2nd edn. Wiley, New YorkGoogle Scholar
  15. Esfand R, Tomalia DA (2001) Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discov Today 6:427–436CrossRefGoogle Scholar
  16. Gates AT, Nettleton EG, Myers VS, Crooks RM (2010) Synthesis and characterization of NiSn dendrimer-encapsulated nanoparticles. Langmuir 26:12994–12999CrossRefGoogle Scholar
  17. Gomez MV, Guerra J, Velders AH, Crooks RM (2008) NMR characterization of fourth-generation PAMAM dendrimers in the presence and absence of palladium dendrimer-encapsulated nanoparticles. J Am Chem Soc 131:341–350CrossRefGoogle Scholar
  18. Huang W, Kuhn JN, Tsung C-K, Zhang Y, Habas SE, Yang P, Somorjai GA (2008) Dendrimer templated synthesis of one nanometer Rh and Pt particles supported on mesoporous silica: catalytic activity for ethylene and pyrrole hydrogenation. Nano Lett 8(7):2027–2034CrossRefGoogle Scholar
  19. Jensen H, Soloviev A, Li Z, Søgaard EG (2005) XPS and FTIR investigation of the surface properties of different prepared titania nano-powders. Appl Surf Sci 246:239–249Google Scholar
  20. Kitchens KM, Ghandehari H (2009) PAMAM dendrimers as nanoscale oral drug delivery systems. Nanotechnology in Drug Delivery, American Association of Pharmaceutical Scientists, New York, NYGoogle Scholar
  21. Knecht MR, Crooks RM (2007) Magnetic properties of dendrimer-encapsulated iron nanoparticles containing an average of 55 and 147 atoms. New J Chem 31:1349–1353CrossRefGoogle Scholar
  22. Knecht MR, Garcia-Martinez JC, Crooks RM (2006) Synthesis, characterization, and magnetic properties of dendrimer-Encapsulated nickel nanoparticles containing <150 atoms. Chem Mater 18:5039–5044CrossRefGoogle Scholar
  23. Knecht MR, Weir MG, Frenkel AI, Crooks RM (2008a) Structural rearrangement of bimetallic alloy PdAu nanoparticles within dendrimer templates to yield core/shell configurations. Chem Mater 20:1019–1028CrossRefGoogle Scholar
  24. Knecht MR, Weir MG, Myers VS, Pyrz WD, Ye H, Petkov V, Buttrey DJ, Frenkel AI, Crooks RM (2008b) Synthesis and characterization of Pt dendrimer-encapsulated nanoparticles: effect of the template on nanoparticle formation. Chem Mater 20:5218–5228CrossRefGoogle Scholar
  25. Kuhn JN, Huang W, Tsung C-K, Zhang Y, Somorjai GA (2008) Structure sensitivity of carbon–nitrogen ring opening: impact of platinum particle size from below 1 to 5 nm upon pyrrole hydrogenation product selectivity over monodisperse platinum nanoparticles loaded onto mesoporous silica. J Am Chem Soc 130:14026–14027CrossRefGoogle Scholar
  26. Lee CC, MacKay JA, Frechet JMJ, Szoka FC (2005) Designing dendrimers for biological applications. Nat Biotechnol 23:1517–1526CrossRefGoogle Scholar
  27. Lopez-De Jesus YM, Vicente A, Lafaye G, Marecot P, Williams CT (2008) Synthesis and characterization of dendrimer-derived supported iridium catalysts. J Phys Chem C 112:13837–13845CrossRefGoogle Scholar
  28. Mankbadi MR, Barakat MA, Ramadan MH, Woodcock HL, Kuhn JN (2011) Iron chelation by polyamidoamine dendrimers: a second-order kinetic model for metal amine complexation. J Phys Chem B 115:13534–13540Google Scholar
  29. Myers VS, Weir MG, Carino EV, Yancey DF, Pande S, Crooks RM (2011) Dendrimer-encapsulated nanoparticles: new synthetic and characterization methods and catalytic applications. Chem Sci 2:1632–1646CrossRefGoogle Scholar
  30. Niu Y, Sun L, Crooks RM (2003) Determination of the intrinsic proton binding constants for poly(amidoamine) dendrimers via potentiometric pH titration. Macromolecules 36:5725–5731CrossRefGoogle Scholar
  31. Scott RWJ, Sivadinarayana C, Wilson OM, Yan Z, Goodman DW, Crooks RM (2005) Titania-supported PdAu bimetallic catalysts prepared from dendrimer-encapsulated nanoparticle precursors. J Am Chem Soc 127(5):1380–1381CrossRefGoogle Scholar
  32. Sun L, Crooks RM (2002) Interactions between dendrimers and charged probe molecules. 1. Theoretical methods for simulating proton and metal ion binding to symmetric polydentate ligands. J Phys Chem B 106:5864–5872Google Scholar
  33. Tomalia DA, Naylor AM, Goddard WA III (1990) Starburst dendrimers: molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. Angew Chem Int Ed 29:138–175CrossRefGoogle Scholar
  34. Witham CA, Huang W, Tsung C-K, Kuhn JN, Somorjai GA, Toste FD (2010) Converting homogeneous to heterogeneous in electrophilic catalysis using monodisperse metal nanoparticles. Nat Chem 2:36–41Google Scholar
  35. Xu Y, Zhao D (2005) Removal of copper from contaminated soil by use of poly(amidoamine) dendrimers. Environ Sci Technol 39:2369–2375CrossRefGoogle Scholar
  36. Yamamoto D, Watanabe S, Miyahara MT (2010) Coordination and reduction processes in the synthesis of dendrimer-encapsulated Pt nanoparticles. Langmuir 26:2339–2345CrossRefGoogle Scholar
  37. Yamamoto D, Watanabe S, Miyahara MT (2011) Modeling Pt2+ coordination process within poly(amidoamine) dendrimers for synthesis of dendrimer-encapsulated Pt nanoparticles. Ind Eng Chem Res 50:7332–7337CrossRefGoogle Scholar
  38. Ye H, Scott RWJ, Crooks RM (2004) Synthesis, characterization, and surface immobilization of platinum and palladium nanoparticles encapsulated within amine-terminated poly(amidoamine) dendrimers. Langmuir 20:2915–2920CrossRefGoogle Scholar
  39. Ye H, Crooks JA, Crooks RM (2007) Effect of particle size on the kinetics of the electrocatalytic oxygen reduction reaction catalyzed by pt dendrimer-encapsulated nanoparticles. Langmuir 23:11901–11906CrossRefGoogle Scholar
  40. Zhao M, Crooks RM (1999) Dendrimer-encapsulated Pt nanoparticles: synthesis, characterization, and applications to catalysis. Adv Mater 11:217–220CrossRefGoogle Scholar
  41. Zhao M, Sun L, Crooks RM (1998) Preparation of Cu nanoclusters within dendrimer templates. J Am Chem Soc 120:4877–4878CrossRefGoogle Scholar

Copyright information

© Islamic Azad University (IAU) 2013

Authors and Affiliations

  • V. A. Castillo
    • 1
  • M. A. Barakat
    • 2
    • 3
  • M. H. Ramadan
    • 2
  • H. L. Woodcock
    • 4
  • J. N. Kuhn
    • 1
  1. 1.Department of Chemical and Biomedical EngineeringUniversity of South FloridaTampaUSA
  2. 2.Environmental Sciences Department, Faculty of Meteorology and EnvironmentKing Abdulaziz University (KAU)JeddahSaudi Arabia
  3. 3.Central Metallurgical R&D InstituteHelwan, CairoEgypt
  4. 4.Department of ChemistryUniversity of South FloridaTampaUSA

Personalised recommendations