Skip to main content

Advertisement

Log in

Study of carbon dioxide and methane equilibrium adsorption on silicoaluminophosphate-34 zeotype and T-type zeolite as adsorbent

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Carbon dioxide is known as a hazardous material with acidic property that can be found as impurity in natural gas reservoirs with a broad range of 2 up to 40 %. Therefore, many efforts have been directed to remove and separate carbon dioxide from methane to prevent corrosion problems as well as improving the natural gas energy content. In this study, two molecular sieves, silicoaluminophosphate-34 (SAPO-34) zeotype and T-type zeolite, were synthesized by the hydrothermal method for the comparative study of adsorptive separation of carbon dioxide from methane. The synthesized adsorbents were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, and Brunner–Emmett–Teller techniques. These characterization tests confirmed formation of both materials with acceptable crystallinity. Both adsorbents were tested in equilibrium adsorption experiments in order to evaluate maximum capacity and adsorption affinity. Adsorption capacity of carbon dioxide and methane on SAPO-34 and zeolite T were measured in a pressure range of 0.1–2.0 MPa and temperature of 288, 298, and 308 K and fitted with the Sips and Langmuir isotherm models. The ideal selectivity of CO2/CH4 was determined for SAPO-34 and zeolite T at the studied pressures and temperatures, indicating that the molecular sieves can be properly used for CO2–CH4 separation or CO2 capturing from natural gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baker RW (2002) Future directions of membrane gas separation technology. Ind Eng Chem Res 41:1393–1411

    Article  CAS  Google Scholar 

  • Belmabkhout Y, Sayari A (2009) Adsorption of CO2 from dry gases on MCM-41 silica at ambient temperature and high pressure. 2: Adsorption of CO2/N2, CO2/CH4 and CO2/H2 binary mixtures. Chem Eng Sci 64:3729–3735

    Article  CAS  Google Scholar 

  • Breck DW, Acara NA (1960) Crystalline zeolite T. US Patent 2950952

  • Ceckiewicz S (1980) Effect of cation exchange in T-type zeolite on the IR spectra of sorbed methanol. React Kinet Catal Lett 13:297–304

    Article  CAS  Google Scholar 

  • Cichocki A, Koscielniak P (1999) Experimental designs applied to hydrothermal synthesis of zeolite ERI + OFF (T) in the Na2O–K2O–Al2O3–SiO2–H2O system. Part 2. Regular study. Microporous Mesoporous Mater 29:369–382

    Article  CAS  Google Scholar 

  • Cui Y, Kita H, Okamoto K (2004a) Preparation and gas separation performance of zeolite T membrane. J Mater Chem 14:924–932

    Article  CAS  Google Scholar 

  • Cui Y, Kita H, Okamoto K (2004b) Zeolite T membrane: preparation, characterization, evaporation of water/organic liquid mixtures and acid stability. J Membr Sci 236:17–27

    Article  CAS  Google Scholar 

  • Delgado JA, Uguina MA, Gomez JM, Ortega L (2006) Adsorption equilibrium of carbon dioxide, methane and nitrogen onto Na- and H-mordenite at high pressures. Sep Purif Technol 48:223–228

    Article  CAS  Google Scholar 

  • Delgado JA, Uguina MA, Sotelo JL, Ruız B, Rosario M (2007) Carbon dioxide/methane separation by adsorption on sepiolite. J Nat Gas Chem 16:235–243

    Article  CAS  Google Scholar 

  • Denayer JM, Devriese LI, Couck S, Martens J, Singh R, Webley PA, Baron GV (2008) Cage and window effects in the adsorption of n-alkanes on chabazite and SAPO-34. J Phys Chem C 112:16593–16599

    Article  CAS  Google Scholar 

  • Djieugoue MA, Prakash AM, Kevan L (2000) Catalytic study of methanol to olefins conversion in four small pore silicoaluminophosphate molecular sieves: influence of the structural type, nickel incorporation, nickel location, and nickel concentration. J Phys Chem B 104:6452–6461

    Article  CAS  Google Scholar 

  • Do DD (1998) Adsorption analysis: equilibria and kinetics. Imperial College Press, London

    Book  Google Scholar 

  • Harlick PJ, Tezel FH (2003) Adsorption of carbon dioxide, methane and nitrogen: pure and binary mixture adsorption for ZSM-5 with SiO2/Al2O3 ratio of 280. Sep Purif Technol 33:199–210

    Article  CAS  Google Scholar 

  • Himeno Sh, Tomita T, Suzuki K, Yoshida S (2007) Characterization and selectivity for methane and carbon dioxide adsorption on the all-silica DD3R zeolite. Microporous Mesoporous Mater 98:62–69

    Article  CAS  Google Scholar 

  • Hosseinpour S, Fatemi S, Mortazavi Y, Gholamhoseini M, Takht Ravanchi M (2011) Performance of CaX zeolite for separation of C2H6, C2H4, and CH4 by adsorption process; capacity, selectivity, and dynamic adsorption measurements. Sep Sci Technol 46:349–355

    Article  CAS  Google Scholar 

  • Huesca RH, Diaz L, Armenta GA (1999) Adsorption equilibria and kinetics of CO2, CH4 and N2 in natural zeolites. Sep Purif Technol 15:163–173

    Article  Google Scholar 

  • Lee YJ, Baek SC, Jun KW (2007) Methanol conversion on SAPO-34 catalysts prepared by mixed template method. Appl Catal A 329:130–136

    Article  CAS  Google Scholar 

  • Li S, Falconer JL, Noble RD (2004) SAPO-34 membranes for CO2/CH4 separation. J Membr Sci 241:121–135

    Article  CAS  Google Scholar 

  • Lok BM, Patton RL (1984) Crystalline silicoaluminophosphates. US Patent 4440871

  • Mirfendereski SM, Mazaheri T, Sadrzadeh M, Mohammadi T (2008) CO2 and CH4 permeation through T-type zeolite membranes: effect of synthesis parameters and feed pressure. Sep Purif Technol 61:317–323

    Article  CAS  Google Scholar 

  • Mougenel JC, Kessler H (1991) Ionic conductivity of offretite, erionite, and zeolite T: application to the determination of stacking faults. Zeolites 17:81–84

    Article  Google Scholar 

  • Pires J, Bestilleiro M, Pinto M, Gil A (2008) Selective adsorption of carbon dioxide, methane and ethane by porous clays heterostructures. Sep Purif Technol 61:161–167

    Article  CAS  Google Scholar 

  • Poshusta JC, Tuan VA, Pape EA, Noble RD, Falconer JL (2000) Separation of light gas mixtures using SAPO-34 membranes. AIChE J 46:779–789

    Article  CAS  Google Scholar 

  • Qi R, Henson MA (1998) Optimization-based design of spiral-wound membrane systems for CO2/CH4 separations. Sep Purif Technol 13:209–225

    Article  CAS  Google Scholar 

  • Rasoolzadeh M, Fatemi S, Gholambosseini M, Moosaviyan M (2008) Study of methane storage and adsorption equilibria in multi-walled carbon nanotubes. Iran J Chem Chem Eng 27:127–134

    CAS  Google Scholar 

  • Rivera-Ramos ME, Ruiz-Mercado GJ, Hernandez-Maldonado AJ (2008) Separation of CO2 from light gas mixtures using ion-exchanged silicoaluminophosphate nanoporous sorbents. Ind Eng Chem Res 47:5602–5610

    Article  CAS  Google Scholar 

  • Xu X, Zhao X, Sun L, Liu X (2009) Adsorption separation of carbon dioxide, methane and nitrogen on monoethanol amine modified β-zeolite. J Nat Gas Chem 18:167–172

    Article  CAS  Google Scholar 

  • Yan Z, Chen B, Huang Y (2009) A solid-sate NMR study of the formation of molecular sieve SAPO-34. Solid State Nucl Magn Reson 35:49–60

    Article  CAS  Google Scholar 

  • Yang S, Evmiridis NP (1996) Synthesis and characterization of an offretite/erionite type zeolite. Microporous Mater 6:19–26

    Article  CAS  Google Scholar 

  • Zhou R, Zhong S, Lin X, Xu N (2009) Synthesis of zeolite T by microwave and conventional heating. Microporous Mesoporous Mater 124:117–122

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been carried out in Adsorption Process Lab in the School of Chemical Engineering of University of Tehran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Fatemi.

Nomenclature

Nomenclature

q :

Adsorption capacity (mol/kg)

q m :

Maximum adsorption capacity (mol/kg)

q eq :

Equilibrium adsorbed amount (mol/kg)

p :

Pressure (MPa)

p eq :

Equilibrium pressure (MPa)

b :

Adsorption equilibrium constant (MPa−1)

T :

Temperature (K)

T 0 :

Minimum experimental temperature (K)

n :

Parameter indicating the heterogeneity of the system

R :

Gas constant (kJ/mol K)

ΔH ads :

Heat of adsorption (kJ/mol)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salmasi, M., Fatemi, S., Doroudian Rad, M. et al. Study of carbon dioxide and methane equilibrium adsorption on silicoaluminophosphate-34 zeotype and T-type zeolite as adsorbent. Int. J. Environ. Sci. Technol. 10, 1067–1074 (2013). https://doi.org/10.1007/s13762-013-0334-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-013-0334-9

Keywords

Navigation