Skip to main content
Log in

Removal of arsenate from aqueous media by magnetic chitosan resin immobilized with molybdate oxoanions

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Chitosan was cross-linked using glutaraldehyde in the presence of magnetite. The resin obtained was chemically modified through the reaction with tetraethylenepentamine ligand. The obtained resin was loaded with Mo(VI) and investigated. The adsorption characteristics of the obtained resin toward As(V) at different experimental conditions were investigated by means of batch and column methods. The resin showed high affinity and fast kinetics for the adsorption of As(V) where an uptake value of 1.30 mmol g−1 was reported in 6 min at 25 °C. Various parameters such as pH, agitation time, As(V) concentration and temperature had been studied. The kinetics and thermodynamic behavior of the adsorption reaction were defined. These data indicated an endothermic and spontaneous adsorption process and kinetically followed pseudo-second-order model, Fickian diffusion low and Elovich equation. Breakthrough curves for the removal of As(V) were studied at different flow rates and bed heights. The critical bed height for the studied resin column was found to be 0.656 cm at flow rate of 4 mL min−1. The mechanism of interaction between As(V) and resin’s active sites was discussed. Regeneration and durability of the loaded resin toward the successive cycles were also clarified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Atia AA, Donia AM, Elwakeel KZ (2005) Adsorption behavior of non-transition metal ions on a synthetic chelating resin bearing iminoacetate functions. Sep Purif Technol 43:43–48

    Article  CAS  Google Scholar 

  • Atia AA, Donia AM, Elwakeel KZ (2008) Selective separation of mercury(II) using magnetic chitosan resin modified with Schiff’s base derived from thiourea and glutaraldehyde. J Hazard Mater 151:372–379

    Article  CAS  Google Scholar 

  • Azizian S (2004) Kinetic models of sorption: a theoretical analysis. J Colloid Interface Sci 276:47–52

    Article  CAS  Google Scholar 

  • Balci B, Keskinkan O, Avci M (2011) Use of BDST and an ANN model for prediction of dye adsorption efficiency of Eucalyptus camaldulensis barks in fixed-bed system. Expert Syst Appl 38:949–956

    Article  Google Scholar 

  • Bundschuh J, Nath B, Bhattacharya P, Liu C-W, Armienta MA, López MVM, Lopez DL, Jean J-S, Cornejo L, Macedo LFL, Filho AT (2012) Arsenic in the human food chain: the Latin American perspective. Sci Total Environ 429:92–106

    Article  CAS  Google Scholar 

  • Couture R-M, Cappellen PV (2011) Reassessing the role of sulfur geochemistry on arsenic speciation in reducing environments. J Hazard Mater 189:647–652

    Article  CAS  Google Scholar 

  • Cui H, Li Q, Gao S, Shang JK (2012) Strong adsorption of arsenic species by amorphous zirconium oxide nanoparticles. J Ind Eng Chem 18:1418–1427

    Article  CAS  Google Scholar 

  • Duker AA, Carranza EJM, Hale M (2005) Arsenic geochemistry and health. Environ Int 31:631–641

    Article  CAS  Google Scholar 

  • Elwakeel KZ (2009) Removal of Reactive Black 5 from aqueous solutions using magnetic chitosan resins. J Hazard Mater 167:383–392

    Article  CAS  Google Scholar 

  • Elwakeel KZ (2010a) Environmental application of chitosan resins for the treatment of water and wastewater: a review. J Dispers Sci Technol 31:273–288

    Article  CAS  Google Scholar 

  • Elwakeel KZ (2010b) Removal of Cr(VI) from alkaline aqueous solutions using chemically modified magnetic chitosan resins. Desalination 250:105–112

    Article  CAS  Google Scholar 

  • Elwakeel KZ, Rekaby M (2011) Efficient removal of Reactive Black 5 from aqueous media using glycidyl methacrylate resin modified with tetraethelenepentamine. J Hazard Mater 188:10–18

    Article  CAS  Google Scholar 

  • Elwakeel KZ, Atia AA, Donia AM (2009) Removal of Mo(VI) as oxoanions from aqueous solutions using chemically modified magnetic chitosan resins. Hydrometallurgy 97:21–28

    Article  CAS  Google Scholar 

  • Elwakeel KZ, Abd El-Ghaffar MA, El-Kousy SM, El-Shorbagy HG (2012) Synthesis of new ammonium chitosan derivatives and their application for dye removal from aqueous media. Chem Eng J 203:458–468

    Article  CAS  Google Scholar 

  • Farnet AM, Qasemian L, Guiral D, Ferré E (2010) A modified method based on arsenomolybdate complex to quantify cellulase activities: application to litters. Pedobiologia 53:159–160

    Article  Google Scholar 

  • Freundlich HMF (1906) Uber die adsorption in losungen. Z J Phys Chem 57:385–470

    CAS  Google Scholar 

  • Gang DD, Deng B, Lin L (2010) As(III) removal using an iron-impregnated chitosan sorbent. J Hazard Mater 182:156–161

    Article  CAS  Google Scholar 

  • Ghosh D, Datta S, Bhattacharya S, Mazumder S (2007) Long-term exposure to arsenic affects head kidney and impairs humoral immune responses of Clarias batrachus. Aquat Toxicol 81:79–89

    Article  CAS  Google Scholar 

  • Goswami A, Raul PK, Purkait MK (2012) Arsenic adsorption using copper (II) oxide nanoparticles. Chem Eng Res Des 90:1387–1396

    Article  CAS  Google Scholar 

  • Guan X, Du J, Meng X, Sun Y, Sun B, Hu Q (2012) Application of titanium dioxide in arsenic removal from water: a review. J Hazard Mater 215–216:1–16

    Article  CAS  Google Scholar 

  • Hansen HK, Nunez P, Grandon R (2006) Electrocoagulation as a remediation tool for wastewaters containing arsenic. Miner Eng 19:521–524

    Article  CAS  Google Scholar 

  • Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465

    Article  CAS  Google Scholar 

  • Iqbal J, Wattoo FH, Wattoo MHS, Malik R, Tirmizi SA, Imran M, Ghangro AB (2011) Adsorption of acid yellow dye on flakes of chitosan prepared from fishery wastes. Arab J Chem 4:389–395

    Article  CAS  Google Scholar 

  • Jain CK, Singh RD (2012) Technological options for the removal of arsenic with special reference to South East Asia. J Environ Manag 107:1–18

    Article  CAS  Google Scholar 

  • Jekel R (1994) Removal of arsenic in drinking water treatment. In: Nriagu JO (ed) Arsenic in the environment, part I: cycling and characterisation. Wiley, New York, pp 119–132

    Google Scholar 

  • Lagergren S (1898) About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens Handlingar 24:1–39

    Google Scholar 

  • Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  • Lenoble V, Deluchat V, Serpaud B, Bollinger JC (2003) Arsenite oxidation and arsenate determination by the molybdene blue method. Talanta 61:267–276

    Article  CAS  Google Scholar 

  • Liao C-M, Shen H–H, Lin T-L, Chen S-C, Chen C-L, Hsu L-I, Chen C-J (2008) Arsenic cancer risk posed to human health from tilapia consumption in Taiwan. Ecotoxicol Environ Saf 70:27–37

    Article  CAS  Google Scholar 

  • Liu B, Lv X, Wang D, Xu Y, Zhang L, Li Y (2012) Adsorption behavior of As(III) onto chitosan resin with As(III) as template ions. J Appl Polym Sci 125:246–253

    Article  CAS  Google Scholar 

  • Lorenzen L, van Deventer JSJ, Landi WM (1995) Factors affecting the mechanism of the adsorption of arsenic species on activated carbon. Miner Eng 8:557–569

    Article  CAS  Google Scholar 

  • Mel’nik LA, Babak YV, Goncharuk VV (2012) Problems of removing arsenic compounds from natural water in the pressure driven treatment process. J Water Chem Technol 34:162–167

    Article  Google Scholar 

  • Miller SM, Zimmerman JB (2010) Novel, bio-based, photoactive arsenic sorbent: TiO2-impregnated chitosan bead. Water Res 44:5722–5729

    Article  CAS  Google Scholar 

  • Min JH, Hering JG (1998) Arsenate sorption by Fe(III)-doped Alginate gels. Water Res 32:1544–1552

    Article  CAS  Google Scholar 

  • Mohan D Jr, Pittman CU (2007) Arsenic removal from water/wastewater using adsorbents-A critical review. J Hazard Mater 142:1–53

    Article  CAS  Google Scholar 

  • Navarro P, Alguacil FJ (2002) Adsorption of antimony and arsenic from a copper electrorefining solution onto activated carbon. Hydrometallurgy 66:101–105

    Article  CAS  Google Scholar 

  • Ng JC, Wang J, Shraim A (2003) A global health problem caused by arsenic from natural sources. Chemosphere 52:1353–1359

    Article  CAS  Google Scholar 

  • Onnby L, Pakade V, Mattiasson B, Kirsebom H (2012) Polymer composite adsorbents using particles of molecularly imprinted polymers or aluminium oxide nanoparticles for treatment of arsenic contaminated waters. Water Res 46:4111–4120

    Article  CAS  Google Scholar 

  • Phan K, Sthiannopkao S, Kim K-W, Wong MH, Sao V, Hashim JH, Yasin MSM, Aljunid SM (2010) Health risk assessment of inorganic arsenic intake of Cambodia residents through groundwater drinking pathway. Water Res 44:5777–5788

    Article  CAS  Google Scholar 

  • Pontoni L, Fabbricino M (2012) Use of chitosan and chitosan-derivatives to remove arsenic from aqueous solutions-a mini review. Carbohydr Res 356:86–92

    Article  CAS  Google Scholar 

  • Qi L, Xu Z (2004) Lead sorption from aqueous solutions on chitosan nanoparticles. Colloids Surf A 251:186–193

    Article  CAS  Google Scholar 

  • Qu S, Yang H, Ren D, Kan S, Zou G, Li D, Li M (1999) Magnetite nanoparticles prepared by precipitation from partially reduced ferric chloride aqueous solutions. J Colloid Interface Sci 215:190–192

    Article  CAS  Google Scholar 

  • Saha S, Sarkar P (2012) Arsenic remediation from drinking water by synthesized nano-alumina dispersed in chitosan-grafted polyacrylamide. J Hazard Mater 227–228:68–78

    Article  CAS  Google Scholar 

  • Will F, Yoe JX (1953) Colorimetric determination of molybdenum with mercaptoacetic acid. Anal Chem 25:1363–1366

    Article  CAS  Google Scholar 

  • Yamani JS, Miller SM, Spaulding ML, Zimmerman JB (2012) Enhanced arsenic removal using mixed metal oxide impregnated chitosan beads. Water Res 46:4427–4434

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Al-Fradouse Water Company, Sadat City, Egypt, for the support of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Z. Elwakeel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elwakeel, K.Z. Removal of arsenate from aqueous media by magnetic chitosan resin immobilized with molybdate oxoanions. Int. J. Environ. Sci. Technol. 11, 1051–1062 (2014). https://doi.org/10.1007/s13762-013-0307-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-013-0307-z

Keywords

Navigation