Skip to main content

Advertisement

Log in

Optimization of novel hyperthermostable β amylase production by Bacillus subtilis DJ5 using solid agroresidual substrates

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Eight different low cost starchy agroresidues namely Barley (B), Wheat bran (WB), Sattu (S), Rice powder (RP), Corn flour (CF), Rice husk (RH), Yellow peas split (YPS) and arrowroot (A) were used for solid culturing of Bacillus subtilis DJ5 for production of novel hyperthermostable β amylase. Various process parameters like initial moisture content, inoculum load, medium pH and incubation temperature affecting enzyme production were optimized to ensure maximum enzyme yield. Only 10 % inoculums load and medium pH of 6.9 was found sufficient to achieve maximum enzyme production in all substrates in a decreasing order, B > WB > S > RP > CF > RH > YPS > A. Optimum β amylase production was highly dependent on initial moisture content of substrate as observed from varying requirement of moisture for different substrates. Only 50 % moisture was sufficient for maximum enzyme production of 84.29 U/gdm in CF. For B, RH, YPS, and A 60 % initial moisture resulted in higher production of 120.34, 35.19, 26.59, and 21.58 U/gdm, respectively, at 37 °C. However, for S and RP higher (70 %) moisture content allowed 113.4 and 85.56 U/gdm enzyme production, respectively. Under optimized conditions, maximum β amylase production was observed after 25 h for A, YPS, RH, RP; 41 h for B, WB, CF, and 45 h for S.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Achi OK, Njoku-Obi ANU (1992) Production of raw starch saccharification amylase by Bacillus alvei grown on different agricultural substrates. World J Microbiol Biotechnol 8:206–207. doi:10.1007/BF01195849

    Article  CAS  Google Scholar 

  • Alva S, Anupama J, Salva J, Chiu YY, Vyshali P, Shruti M et al (2007) Production and characterization of fungal amylase enzyme isolated from Aspergillus sp. JGI 12 in solid state culture. Afr J Biotechnol 6:576–581

    CAS  Google Scholar 

  • Anto H, Trivedi U, Patel K (2006) Alpha amylase production by Bacillus cereus MTCC 1305 using solid state fermentation. Food Technol Biotechnol 44:241–245

    CAS  Google Scholar 

  • Balkan B, Ertan F (2007) Production of alpha amylase from Penicillium chrysogenum under solid state fermentation by using some agricultural by products. Food Technol Biotechnol 45:439–442

    CAS  Google Scholar 

  • Baysal Z, Uyar F, Aytekin C (2003) Solid-state fermentation for production of α-amylase by a thermotolerant Bacillus subtilis from hot-spring water. Process Biochem 38:1665–1668. doi:10.1016/S0032-9592(02)00150-4

    Article  CAS  Google Scholar 

  • Bellon-Maurel V, Orliac O, Christen P (2003) Sensors and measurements in solid-state fermentation: a review. Process Biochem 38:881–896. doi:10.1016/S0032-9592(02)00093-6

    Article  CAS  Google Scholar 

  • Bernfeld P (1955) Amylase α and β. Methods Enzymol 1:149–158. doi:10.1016/0076-6879(55)01021-5

    Article  CAS  Google Scholar 

  • Bhatty RS (1993) Nonmalting uses of barley. In: MacGregor AW, Bhatty RS (eds) Barley chemistry and technology. Am Assoc Cereal Chem, St. Paul, pp 355–417

    Google Scholar 

  • Gangadharan D, Sivaramakrishnan S, Nampoothiri KM, Pandey A (2006) Solid culturing of Bacillus amyloliquefaciens for alpha amylase production. Food Technol Biotechnol 44:269–274

    CAS  Google Scholar 

  • Gervais P, Molin P (2003) The role of water in solid state fermentation. Biochem Eng J 13:85–101. doi:10.1016/S1369-703X(02)00122-5

    Article  CAS  Google Scholar 

  • González GV, Torres EF (2006) Why solid-state fermentation seems to be resistant to catabolite repression? Food Technol Biotechnol 44:397–406

    Google Scholar 

  • Gustavsson J, Cederberg C, Sonesson U, van Otterdijk R, Meybeck A (2011) Global food losses and food waste: extent, causes and prevention. International congress of food and agriculture organization of the United Nations, Düsseldorf

    Google Scholar 

  • Haddadin MSY, Abu-Reesh IM, Haddadin FAS, Robinson RK (2001) Utilisation of tomato pomace as a substrate for the production of vitamin B-12—a preliminary appraisal. Bioresource Technol 78:225–230. doi:10.1016/S0960-8524(01)00018-9

    Article  CAS  Google Scholar 

  • Haki GD, Rakshit SK (2003) Developments in industrially important thermostable enzymes: a review. Bioresource Technol 89:17–34. doi:10.1016/S0960-8524(03)00033-6

    Article  CAS  Google Scholar 

  • Haq IU, Ashraf H, Iqbal J, Qadeer MA (2002) Biosynthesis of α-amylase by chemically treated mutant of Bacillus subtilis. J Biol Sci 2:73–75. doi:10.3923/jbs.2002.73.75

    Article  Google Scholar 

  • Hoogschagen M, Zhu Y, van As H, Tramper J, Rinzema A (2001) Influence of wheat type and pretreatment on fungal growth in solid-state fermentation. Biotechnol Lett 23:1183–1187. doi:10.1023/A:1010577414126

    Article  CAS  Google Scholar 

  • Kim S, Dale BE (2004) Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 26:361–375. doi:10.1016/j.biombioe.2003.08.002

    Article  Google Scholar 

  • Kunamneni A, Kuttanpillai SK, Singh S (2005) Response surface methodological approach to optimize the nutritional parameters for enhanced production of α-amylase in solid-state fermentation by Thermomyces lanuginosus. Afr J Biotechnol 4:708–716

    Article  CAS  Google Scholar 

  • Lonsane BK, Ghildyal NP, Budiatman S, Ramakrishna SV (1985) Engineering aspects of solid state fermentation. Enzyme Microb Technol 7:258–265. doi:10.1016/0141-0229(85)90083-3

    Article  CAS  Google Scholar 

  • Pandey A (2003) Solid-state fermentation. Biochem Eng J 13:81–84. doi:10.1016/S1369-703X(02)00121-3

    Article  CAS  Google Scholar 

  • Pandey A, Soccol CR (2000) Economic utilization of crop residues for value addition—a futuristic approach. J Sci Ind Res 59:12–22

    CAS  Google Scholar 

  • Pandey A, Selvakumar P, Soccol CR, Nigam P (1999) Solid-state fermentation for the production of industrial enzymes. Curr Sci 77:149–162

    CAS  Google Scholar 

  • Pandey A, Nigam P, Soccol CR, Soccol VT, Singh D, Mohan R (2000a) Advances in microbial amylases. Biotechnol Appl Biochem 31:135–152. doi:10.1042/BA19990073

    Article  CAS  Google Scholar 

  • Pandey A, Soccol CR, Mitchell D (2000b) New developments in solid-state fermentation, I: bioprocesses and applications. Process Biochem 35:1153–1169. doi:10.1016/S0032-9592(00)00152-7

    Article  CAS  Google Scholar 

  • Pandey A, Soccol CR, Nigam P, Soccol VT, Vandenbergh LPS, Mohan R (2000c) Biotechnological potential of agro-industrial residues, II: cassava bagasse. Bioresource Technol 74:81–87. doi:10.1016/S0960-8524(99)00143-1

    Article  CAS  Google Scholar 

  • Pandey A, Soccol CR, Nigam P, Soccol VT (2000d) Biotechnological potential of agro-industrial residues I. Sugarcane bagasse. Bioresource Technol 74:69–80. doi:0.1016/S0960-8524(99)00142-X

    Article  CAS  Google Scholar 

  • Pandey A, Szakacs G, Soccol CR, Leon JAR, Soccol VT (2001) Production, purification and properties of microbial phytases. Bioresource Technol 77:203–214. doi:10.1016/S0960-8524(00)00139-5

    Article  CAS  Google Scholar 

  • Parfitt J, Barthel M, Macnaughton S (2010) Food waste within food supply chains: quantification and potential for change to 2050. Phil Trans R Soc 365:3065–3081. doi:10.1098/rstb.2010.0126

    Article  Google Scholar 

  • Peralta-Perez MR, Saucedo-Castaneda G, Gutierrez-Rojas M, Campero A (2001) SiO2 xerogel: a suitable inert support for microbial growth. J Sol–Gel. Sci Technol 20:105–110. doi:10.1023/A:1008784802596

    CAS  Google Scholar 

  • Perez-Guarre N, Torrado-Agrasar A, Lopez-Macias C, Pastrana L (2003) Main characteristics and application of solid substrate fermentation. Electron J Environ Agric Food Chem 2:243–350

    Google Scholar 

  • Poddar A, Gachhui R, Jana SC (2011a) Cell immobilization of Bacillus subtilis DJ5 for production of novel hyperthermostable extracellular β amylase. Aust J Basic Appl Sci 5:456–464

    CAS  Google Scholar 

  • Poddar A, Gachhui R, Jana SC (2011b) Saccharification of native starches by hyperthermostable β amylase from Bacillus Subtilis DJ5 and optimization of process condition for higher production of maltose. Int J Appl Biotechnol Biochem 1:221–230

    Google Scholar 

  • Ramesh MV, Lonsane BK (1987) A novel bacterial thermostable alpha amylase system produced under solid state fermentation. Biotechnol Lett 9:501–504. doi:10.1007/BF01027460

    Article  CAS  Google Scholar 

  • Ramesh MV, Lonsane BK (1990) Critical importance of moisture content of the medium in α amylase production by Bacillus licheniformis M27 in solid state fermentation medium. Appl Microbiol Biotechnol 33:501–505. doi:10.1007/BF00172541

    Article  CAS  Google Scholar 

  • Ray RR, Nanada G (1996) Microbial β amylases: biosynthesis, Characteristics and Industrial Applications. Crit Rev Microbiol 22:182–299. doi:10.3109/10408419609106459

    Article  Google Scholar 

  • Robertson GH, Wong DWS, Lee CC, Wagschal K, Smith MR, Orts WJ (2006) Native or raw starch digestion: a key step in energy efficient biorefining of grain. J Agric Food Chem 54:353–365. doi:10.1021/jf051883m

    Article  CAS  Google Scholar 

  • Shen GJ, Saha B, Lee Y, Bhatnagar L, Zeikus J (1988) Purification and characterization of a novel thermostable β amylase from Clostridium thermosulfurogenes. Biochem J 254:835–840

    CAS  Google Scholar 

  • Shiau JR, Hung HC, Jeang CL (2003) Improving the thermostability of raw starch digesting amylase from Cytophaga sp. by site directed mutagenesis. Appl Environ Microbiol 69:2383–2385. doi:10.1128/AEM.69.4.2383-2385.2003

    Article  CAS  Google Scholar 

  • Sivaramakrishnan S, Gangadharan D, Nampoothiri KM, Soccol CR, Pandey A (2006) α-Amylases from Microbial Sources—An Overview on Recent Developments. Food Technol Biotechnol 44:173–184

    CAS  Google Scholar 

  • van der Maarel MJEC, van der Veen B, Uitdehaag JCM, Leemhuis H, Dijkhuizen L (2002) Properties and applications of starch-converting enzymes of the α-amylase family. J Biotechnol 94:137–155. doi:10.1016/S0168-1656(01)00407-2

    Article  Google Scholar 

Download references

Acknowledgments

Authors thank the Principal, Bidhannagar College for providing all sorts of infrastructural facility for carrying out the study. This work was financially supported by University Grants Commission (F. No. 33-124/2007 (SR) dated 6th March, 2008).

Nomenclature

B:

Barley

S:

Sattu

WB:

Wheat bran

YPS:

Yellow peas split

CF:

Corn flour

A:

Arrowroot

RH:

Rice husk

RP:

Rice powder

SSF:

Solid state fermentation

SmF:

Submerged fermentation

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. C. Jana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poddar, A., Jana, S.C. Optimization of novel hyperthermostable β amylase production by Bacillus subtilis DJ5 using solid agroresidual substrates. Int. J. Environ. Sci. Technol. 11, 1127–1134 (2014). https://doi.org/10.1007/s13762-013-0275-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-013-0275-3

Keywords

Navigation