Skip to main content
Log in

On-site treatment of textile yarn dyeing effluents using an integrated biological–chemical oxidation process

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

This paper reports the results of the treatment of a yarn dyeing effluent using an integrated biological–chemical oxidation process. In particular, the biological unit was based on a sequencing batch biofilter granular sludge reactor (SBBGR), while the chemical treatment consisted of an ozonation step. Biological treatment alone was first performed as a reference for comparison. While biological treatment did not produce an effluent for direct discharge, the integrated process assured good treatment results, with satisfactory removal of chemical oxygen demand (up to 89.8 %), total nitrogen (up to 88.2 %), surfactants (up to 90.7 %) and colour (up to 99 %), with an ozone dose of 110 mg of ozone per litre of wastewater. Biomass characterization by fluorescence in situ hybridization has revealed that filamentous bacteria represented about 20 % of biomass (coherently with high sludge volume index values); thanks to its special design, SBBGR guaranteed, however, stable treatment performances and low effluent suspended solids concentrations, while conventional activated sludge systems suffer from sludge bulking and even treatment failure in such a condition. Furthermore, biomass characterization has evidenced the presence of a shortcut nitrification–denitrification process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahn DH, Chang WS, Yoon TI (1999) Dyestuff wastewater treatment using chemical oxidation, physical adsorption and fixed bed biofilm process. Process Biochem 34:429–439

    Article  CAS  Google Scholar 

  • Alaton IA, Balcioglu IA, Bahnemann DW (2002) Advanced oxidation of a reactive dyebath effluent: comparison of O3, H2O2/UV-C and TiO2/UV-A processes. Water Res 36:1143–1154

    Article  CAS  Google Scholar 

  • Amann RI, Ludwig W, Schleifer K-H (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Mol Biol R 59:143–169

    CAS  Google Scholar 

  • Andleeb S, Atiq N, Ali MI, Razi-ul-Hussnain R, Shafique M, Ahmad B, Ghumro PB, Hussain M, Hameed A, Ahmad S (2010) Biological treatment of textile effluent in stirred tank bioreactor. Int J Agr Biol 12:256–260

    CAS  Google Scholar 

  • APHA, AWWA, WEF (1998) Standard Methods for the Examination of Water and Wastewater, 20th edn. American Public Health Association, American Water Works Association, Water Environment Federation, Washington, DC

  • Arafat HA (2007) Simple physical treatment for the reuse of wastewater from textile industry in the Middle East. J Environ Eng Sci 6:115–122

    Article  CAS  Google Scholar 

  • Badani Z, Ait-Amar H, Si-Salah A, Brik M, Fuchs W (2005) Treatment of textile waste water by membrane bioreactor and reuse. Desalination 185:411–417

    Article  CAS  Google Scholar 

  • Bechtold T, Burtscher E, Hung Y-T (2004) Treatment of textile wastes. In: Wang LK, Hung Y-T, Lo HH, Yapijakis C (eds) Handbook of industrial and hazardous wastes treatment, 2nd edn. Marcel Dekker Inc, New York, pp 379–414

    Google Scholar 

  • Bes-Pià A, Mendoza-Roca JA, Alcaina-Miranda MI, Iborra-Clar A, Iborra-Clar MI (2002) Reuse of wastewater of the textile industry after its treatment with a combination of physico-chemical treatment and membrane technologies. Desalination 149:169–174

    Article  Google Scholar 

  • Buckley CA (1992) Membrane technology for the treatment of dyehouse effluents. Water Sci Technol 25(10):203–209

    CAS  Google Scholar 

  • Buitron G, Quezada M, Moreno G (2004) Aerobic degradation of the azo dye acid red 151 in a sequencing batch biofilter. Bioresour Technol 92:143–149

    Article  CAS  Google Scholar 

  • Chen G, Huang M, Chen L, Chen D (2011) Biotreatment of azo dyeing wastewater using a modified anaerobic-anoxic-aerobic reactor system. Adv Mat Res 183–185:170–175

    Article  CAS  Google Scholar 

  • Correia VM, Stephenson T, Judd SJ (1994) Characterisation of textile wastewaters—a review. Environ Technol 15:917–929

    Article  CAS  Google Scholar 

  • De Sanctis M, Di Iaconi C, Lopez A, Rossetti S (2010) Granular biomass structure and population dynamics in sequencing batch biofilter granular reactor (SBBGR). Bioresour Technol 101:2152–2158

    Article  CAS  Google Scholar 

  • Delee W, O’Neill C, Hawkes FR, Pinheiro HM (1998) Anaerobic treatment of textile effluents: a review. J Chem Technol Biotechnol 73:323–335

    Article  CAS  Google Scholar 

  • Di Iaconi C, Del Moro G, De Sanctis M, Rossetti S (2010) A chemically enhanced biological process for lowering operative costs and solid residues of industrial recalcitrant wastewater treatment. Water Res 44:3635–3644

    Article  CAS  Google Scholar 

  • Doğruel S, Germirli-Babuna F, Kabdaşli I, Insel G, Orhon D (2002) Effect of stream segregation on ozonation for the removal of significant COD fractions from textile wastewater. J Chem Technol Biotechnol 78:6–14

    Article  CAS  Google Scholar 

  • European Commission (2003) Integrated Pollution Prevention and Control (IPPC), Reference document on best available techniques for the textiles industry

  • European Commission (2011) Eurostat pocketbooks—key figures on european business with a special feature on SMEs. Publications Office of the European Union, Luxembourg

    Google Scholar 

  • Gao D, Peng Y, Li B, Liang H (2009) Shortcut nitrification-denitrification by real-time control strategies. Bioresour Technol 100:2298–2300

    Article  CAS  Google Scholar 

  • Gemirli Babuna F, Orhon D, Ubay Cokgor E, Insel G, Yaprakli B (1998) Modelling of activated sludge for textile wastewater. Water Sci Technol 38(4–5):9–17

    Article  Google Scholar 

  • Grekova-Vasileva M, Topalova Y (2009) Biological algorithms for textile wastewater management. Biotechnol Biotech Equip 23(2):442–447

    Google Scholar 

  • Haroun M, Idris A (2009) Treatment of textile wastewater with an anaerobic fluidized bed reactor. Desalination 237:357–366

    Article  CAS  Google Scholar 

  • Hassan M, Hawkyard CJ (2002) Decolourisation of aqueous dyes by sequential oxidation treatment with ozone and Fenton’s reagent. J Chem Technol Biotechnol 77:834–841

    Article  CAS  Google Scholar 

  • Khursheed A, Kazmi AA (2011) Retrospective of ecological approaches to excess sludge reduction. Water Res 45:4287–4310

    Article  CAS  Google Scholar 

  • Lau WJ, Ismail AF (2009) Polymeric nanofiltration membranes for textile dye wastewater treatment: preparation, performance evaluation, transport modelling and fouling control—a review. Desalination 245:321–348

    Article  CAS  Google Scholar 

  • Libra JA, Sosath F (2003) Combination of biological and chemical processes for the treatment of textile wastewater containing reactive dyes. J Chem Technol Biotechnol 78:1149–1156

    Article  CAS  Google Scholar 

  • Lotito AM, Fratino U, Mancini A, Bergna G, Di Iaconi C (2012) Effective aerobic granular sludge treatment of a real dyeing wastewater. Int Biodeterior Biodegrad 69:62–68

    Article  CAS  Google Scholar 

  • Loy A, Maixner F, Wagner M, Horn M (2007) ProbeBase—an online resource for rRNA-targeted oligonucleotide probes: new features 2007. Nucleic Acids Res 35:D800–D804

    Article  CAS  Google Scholar 

  • Marcucci M, Ciabatti I, Matteucci A, Vernaglione G (2003) Membrane technologies applied to textile wastewater treatment. Ann NY Acad Sci 984:53–64

    Article  CAS  Google Scholar 

  • Nandy T, Dhodapkar RS, Pophali GR, Kaul SN, Devotta S (2005) Application of chemical, biological and membrane separation processes in textile industry with recourse to zero effluent discharge—a case study. Environ Technol 26:1055–1063

    Article  CAS  Google Scholar 

  • Orhon D, Dulkadiroğlu H, Doğruel S, Kabdaşli I, Sozen S, Gemirli Babuna F (2002) Ozonation application in activated sludge systems for a textile mill effluent. Water Sci Technol 45(1–2):305–313

    CAS  Google Scholar 

  • Sinha B, Annachhatre AP (2007) Partial nitrification—operational parameters and microorganisms involved. Rev Environ Sci Biotechnol 6:285–313

    Article  CAS  Google Scholar 

  • Tehrani-Bagha AR, Mahamoodi NM, Menger FM (2010) Degradation of a persistent organic dye from colored textile wastewater by ozonation. Desalination 260:34–38

    Article  CAS  Google Scholar 

  • Vandevivere PC, Bianchi R, Verstraete W (1998) Treatment and reuse of wastewater from the textile wet-processing industry: review of emerging technologies. J Chem Technol Biotechnol 72:289–302

    Article  CAS  Google Scholar 

  • Verstraete W, Philips S (1998) Nitrification–denitrification processes and technologies in new contexts. Environ Pollut 102(S1):717–726

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study was financially supported by Lariana Depur s.p.a. (Grant of 31 August 2009), a company operating wastewater treatment plants in the textile industrial district of Como (Italy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Di Iaconi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lotito, A.M., De Sanctis, M., Rossetti, S. et al. On-site treatment of textile yarn dyeing effluents using an integrated biological–chemical oxidation process. Int. J. Environ. Sci. Technol. 11, 623–632 (2014). https://doi.org/10.1007/s13762-013-0271-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-013-0271-7

Keywords

Navigation