Skip to main content

Advertisement

Log in

Removal of uranium(VI) from aqueous solutions using Eucalyptus citriodora distillation sludge

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Adsorption and desorption of uranium(VI) from dilute aqueous solutions by Eucalyptus citriodora distillation sludge was studied in a batch mode. The potential of Eucalyptus citriodora distillation sludge to remove uranium(VI) from aqueous solutions has been investigated at different conditions of solution pH, metal ion concentrations, biosorbent dosage, biosorbent particle size, contact time and temperature. The results indicated that biosorption capacity of Eucalyptus citriodora distillation sludge was strongly affected by the medium pH, the biosorbent dose, metal ion concentrations and medium temperature. Reduction in particle size increased the biosorption capacity. Langmuir and Freundlich isotherm models were applied to biosorption data to determine the biosorption characteristics. An optimum biosorption capacity (57.75 mg/g) was achieved with pH 4.0, particle size 0.255 mm, biosorbent dose 0.5 g/100 mL and initial uranium(VI) concentration of 100 mg/L. Uranium(VI) removal by Eucalyptus citriodora distillation sludge was rapid, the equilibrium was established within 60 min and pseudo-second-order model was found to fit with the experimental data. The biosorption process decreased with an increase in the temperature indicating its exothermic nature. Pretreatments of biomass with different reagents affected its biosorption capacity. A significant increase (34 %) in biosorption capacity (83.25 mg/g) was observed with benzene treatment. Fourier-transform infra-red studies showed the involvement of carbonyl, carboxyl and amide groups in the biosorption process. The results indicated that sulfuric acid had the best effects as an eluent showing 93.24 % desorption capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aksu Z (2002) Equilibrium and kinetic modeling of cadmium(II) by C. vulgaris in a batch system: effect of temperature. Sep Purif Technol 21:285–294

    Article  Google Scholar 

  • Asgher M, Bhatti HN (2010) Mechanistic and kinetic evaluation of biosorption of reactive azo dyes by free, immobilized and chemically treated Citrus sinensis waste biomass. Ecol Eng 36:1660–1665

    Article  Google Scholar 

  • Ashkenazy R, Gottlieb L, Yannai S (1997) Characterization of acetone washed yeast biomass functional groups involved in Pb2+ biosorption. Biotechnol Bioeng 5:1–10

    Article  Google Scholar 

  • Bai SR, Abraham TE (2003) Studies of Cr(VI) adsorption–desorption using immobilized fungal biomass. Bioresour Technol 87:17–26

    Article  Google Scholar 

  • Bhainsa KC, D’Souza SF (2001) Uranium (VI) biosorption by dried roots of Eichhornia crassipes (water hyacinth). J Environ Sci Health A 36:1621–1631

    Article  CAS  Google Scholar 

  • Bhat SV, Melo JS, Chaugule BB, D’Souza SF (2008) Biosorption characteristics of uranium (VI) from aqueous medium onto Catenella repens, a red alga. J Hazard Mater 158:628–635

    Article  CAS  Google Scholar 

  • Bhatti TM, Mateen M, Amin M, Kauser AM, Khalid AM (1991) Spectrophotometric determination of uranium (VI) in bacterial leach liquors using arsenazo-III. J Chem Technol Biotechnol 52:331–341

    Article  CAS  Google Scholar 

  • Bhatti HN, Khalid R, Hanif MA (2009) Dynamic biosorption of Zn(II) and Cu(II) using pretreated Rosa gruss an teplitz (red rose) distillation sludge. Chem Eng J 148:434–443

    Article  CAS  Google Scholar 

  • Bhatti HN, Bajwa II, Hanif MA, Bukhari IH (2010) Removal of lead and cobalt using lignocellulosic fiber derived from Citrus reticulata waste biomass. Korean J Chem Eng 27:218–227

    Article  CAS  Google Scholar 

  • Boddu VM, Abburi K, Talbott JL, Smith ED (2003) Removal of Cr(VI) from wastewater using a new composite chitosan biosorbent. Environ Sci Technol 37:4449–4456

    Article  CAS  Google Scholar 

  • Boota R, Bhatti HN, Hanif MA (2009) Removal of Cu(II) and Zn(II) using lignocellulosic fiber derived from Citrus reticulate (Kinnow) waste biomass. Sep Sci Technol 44:4000–4022

    Article  CAS  Google Scholar 

  • Donat R, Ayata S (2005) Adsorption and thermodynamic behavior of uranium(VI) on Ulva sp.–Na bentonite composite adsorbent. J Radioanal Nucl Chem 265:107–114

    Article  CAS  Google Scholar 

  • Dursun AY (2006) A comparative study on determination of the equilibrium, kinetic and thermodynamic parameters of biosorption of copper(II) and lead(II) ions onto pretreated Aspergillus niger. Biochem Eng J 28:187–195

    Article  CAS  Google Scholar 

  • Freundlich H (1906) Adsorption in solution. Phys Chem Soc 40:1361–1368

    Google Scholar 

  • Gok C, Aytas S (2009) Biosorption of uranium (VI) from aqueous using calcium alginate beads. J Hazard Mater 168:504–508

    Article  CAS  Google Scholar 

  • Jnr MH, Spiff AI (2005) Effect of temperature on the sorption of Pb2+ and Cd2+ from aqueous solution by Caladium bicolor (wild cocoyam) biomass. Elect J Biotechnol 8:162–169

    Article  CAS  Google Scholar 

  • Jovanovic SV, Pan P, Wong L (2012) Bioaccessibility of uranium in soil samples from Port Hope, Ontario, Canada. Environ Sci Technol 46:9012–9018

    Article  CAS  Google Scholar 

  • Kalin M, Wheeler WN, Meinrath G (2005) The removal of uranium from mining waste water using algal/microbial biomasses. J Environ Radioact 78:151–177

    Article  CAS  Google Scholar 

  • Kratochvil D, Volesky B (1998) Advances in the biosorption of heavy metals. Trends Biotechnol 16:291–300

    Article  CAS  Google Scholar 

  • Lagergren (1898) Zur theorie der sogenannten adsorption geloster stoffe, Kungliga Svenska Vetenkapsakademiens. Handlinger Band 24:1–39

    Google Scholar 

  • Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica, and platinum. J Am Chem Soc 40:1361–1368

    Article  CAS  Google Scholar 

  • Li X, Wu J, Liao J, Zhang D, Yang J, Feng Y, Zeng J, Wen W, Yang Y, Tang J, Liu N (2012) Adsorption and desorption of uranium (VI) in aerated zone soil. J Environ Radioact 115:143–150

    Article  CAS  Google Scholar 

  • Ozer A, Ozer D (2003) Comparative study of the biosorption of Pb(II), Ni (II) and Cr(VI) ions onto S. cervesiae determination of biosorption heats. J Hazard Mater 100:219–229

    Article  CAS  Google Scholar 

  • Saifuddin N, Dinara S (2012) Immobilization of Saccharomyces cerevisiae onto cross-linked Chitosan coated with magnetic nanoparticles for adsorption of uranium (VI) ions. Adv Nat Appl Sci 6:249–267

    CAS  Google Scholar 

  • Saleem N, Bhatti HN (2011) Adsorptive removal and recovery of U(VI) by citrus waste biomass. Bioresources 6:2522–2538

    CAS  Google Scholar 

  • Sar P, D’ Souza SF (2002) Biosorption of thorium (IV) by a Pseudomonas biomass. Biotechnol Lett 24:239–243

    Article  CAS  Google Scholar 

  • Singh V, Sharma AK, Tripathi DN, Shanghi R (2009) Poly (methylmethacrylate) grafted chitosan: an efficient adsorbent for anionic azo dyes. J Hazard Mater 161:955–966

    Article  CAS  Google Scholar 

  • Tuzen M, Saygi KO, Usta C, Soylak M (2008) Pseudomonas aeruginosa immobilized multiwalled carbon nanotubes as biosorbent for heavy metal ions. Bioresour Technol 99:1563–1570

    Article  CAS  Google Scholar 

  • Wang J, Hu X, Liu Y, Xie S, Bao Z (2010) Biosorption of U(VI) by immobilized Aspergillus fumigatus beads. J Environ Radioact 101:504–508

    Article  CAS  Google Scholar 

  • Wazne M, Meng X, Korfiatis GP, Christodoulatos C (2006) Christodoulatos carbonate effects on hexavalent uranium removal from water by nanocrystalline titanium dioxide. J Hazard Mater 136:47–52

    Article  CAS  Google Scholar 

  • Xie S, Yang J, Chen C, Zhang X, Wang Q, Zhang C (2008) Study on biosorption kinetics and thermodynamics of uranium by Citrobacter freundii. J Environ Radioact 99:126–133

    Article  CAS  Google Scholar 

  • Yang J, Volesky B (1999) Biosorption of uranium on Sargassum biomass. Water Res 33:3357–3363

    Article  CAS  Google Scholar 

  • Zou W, Zhao I (2012) Removal of uranium(VI) from aqueous solution using citric acid modified pine sawdust: Batch and column studies. J Radioanal Nucl Chem 291:585–595

    Article  CAS  Google Scholar 

  • Zubair A, Bhatti HN, Hanif MA, Shafqat F (2008) Kinetic and Equilibrium modeling for Cr(III) and Cr(VI) removal from aqueous solutions by Citrus reticulate waste biomass. Water Air Soil Pollut 191:305–318

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Central Resource Laboratory, University of Peshawar for providing facilities for technical analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. N. Bhatti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhatti, H.N., Hamid, S. Removal of uranium(VI) from aqueous solutions using Eucalyptus citriodora distillation sludge. Int. J. Environ. Sci. Technol. 11, 813–822 (2014). https://doi.org/10.1007/s13762-013-0267-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-013-0267-3

Keywords

Navigation