Biosorption of lead from acid solution using chitosan as a supporting material for spore forming-fungal biomass encapsulation

  • W. Lang
  • W. Buranaboripan
  • J. Wongchawalit
  • P. Parakulsuksatid
  • W. Vanichsriratana
  • N. Sakairi
  • W. Pathom-aree
  • S. Sirisansaneeyakul
Original Paper

Abstract

Asexual spores of the filamentous fungus Rhizopus arrhizus were used as the resting biomass as they tolerate chitosan gelling for mycelia growing in chitosan beads. Biosorption of lead using the dead detergent pre-treated chitosan-immobilised and grown fungal beads was performed with initial lead (II) nitrate concentrations ranging from 9.02 to 281.65 mg/L. The adsorption data were best correlated with equilibrium adsorption isotherms in the order Redlich–Peterson, Langmuir, Freundlich and Fritz–Schlünder by non-linear regression. The biosorption kinetic model of pseudo second-order (R2 > 0.99) fitted better than pseudo first-order and modified pseudo first-order models. Among the four pseudo second-order kinetic models, the Blanchard model was the best fit for the experimental biosorption data. The rate-limiting step of biosorption of lead was shown to be intraparticle diffusion controlled according to Weber and Morris model fitting. The beads could be regenerated using 1 M nitric acid solution. This illustrated the good performance of the beads for regenerated sorption/desorption at least five cycles.

Keywords

Adsorption kinetics Detergent Diffusion model Heavy metal Lead (II) Regeneration Rhizopus arrhizus 

References

  1. Akar T, Tunali S (2006) Biosorption characteristics of Aspergillus flavus biomass for removal of Pb(II) and Cu(II) ions from an aqueous solution. Bioresour Technol 97(15):1780–1787CrossRefGoogle Scholar
  2. Akpor OB, Muchie M (2010) Remediation of heavy metals in drinking water and wastewater treatment systems: processes and applications: review. Int J Phys Sci 5(12):1807–1817Google Scholar
  3. Aksu Z (2001) Biosorption of reactive dyes by dried activated sludge: equilibrium and kinetic modeling. Biochem Eng J 7(1):79–84CrossRefGoogle Scholar
  4. Aksu Z, Balibek E (2007) Chromium(VI) biosorption by dried Rhizopus arrhizus: effect of salt (NaCl) concentration on equilibrium and kinetic parameters. J. Hazard. Mat 145(1–2):210–220CrossRefGoogle Scholar
  5. Aksu Z, Unsal A, Kutsal T (1997) Application of multicomponent adsorption isotherms to simultaneous biosorption of iron(III) and chromium(VI) on Chlorella vulgaris. J Chem Tech Biotech 70(4):368–378CrossRefGoogle Scholar
  6. An HK, Park YB, Kim SD (2001) Crab shell for the removal of heavy metals from aqueous solution. Water Res 35(15):3551–3556CrossRefGoogle Scholar
  7. Arica MY, Arpa Ç, Ergene A, Bayramoğlu G, Genç Ö (2003) Ca-alginate as a supper for Pb2+ and Zn2+ biosorption with immobilised Phanerochaete chrysosporium. Carbohydr Polym 52(2):167–174CrossRefGoogle Scholar
  8. Bayramoğlu G, Arica YM (2006) Biosorption of benzidine based textile dyes “Direct Blue 1 and Direct Red using native and heat-treated biomass of Trametes versicolor. J Hazard Mat 143(1–2):135–143Google Scholar
  9. Blanchard G, Maunaye M, Martin G (1984) Removal of heavy-metals from water waters by means of natural zeolites. Water Res 18(12):1501–1507CrossRefGoogle Scholar
  10. Bossrez S, Remacle J, Goyette J (1997) Adsorption of nickel by Enterococcus hirae cell walls. Chem Tech Biotech 70(1):45–50CrossRefGoogle Scholar
  11. Bueno BYM, Torem ML, Molina F, de Mesquita LMS (2008) Biosorption of lead(II), chromium(III) and copper(II) by R. opacus: equilibrium and kinetic studies. Miner Eng 21(1):65–75CrossRefGoogle Scholar
  12. Crist RH, Martim JR, Chanko J, Crist DR (1996) Uptake of metals on peat moss: an ion-exchange process. Environ Sci Tech 30(8):2456–2461CrossRefGoogle Scholar
  13. Deng L, Su Y, Su H, Wang X, Zhu X (2007) Sorption and desorption of lead(II) from wastewater by green algae Cladophora fascicularis. J Hazard Mat 143(1–2):220–225CrossRefGoogle Scholar
  14. Devika RB, Varsha BP (2006) Studies on effect of pH on cross-linking of chitosan with sodium tripolyphosphate: a technical note. AAPS Pharm Sci Tech 7(2):E138–E143CrossRefGoogle Scholar
  15. Friis N, Myers-Keith P (1986) Biosorption of uranium and lead by Streptomyces longwoodensis. Biotechnol Bioeng 28(1):21–28CrossRefGoogle Scholar
  16. Fritz W, Schlünder EV (1974) Simultaneous adsorption equilibria of organic solutes in dilute aqueous solutions on activated carbon. Chem Eng Sci 29(5):1279–1282CrossRefGoogle Scholar
  17. Gavrilescu M (2004) Removal of heavy metals from the environmental by biosorption. Eng Life Sci 4(3):219–232CrossRefGoogle Scholar
  18. Ghodbane I, Hamdaoui O (2008) Removal of mercury (II) from aqueous media using eucalyptus bark: kinetic and equilibrium studies. J Hazard Mat 160(2–3):301–309CrossRefGoogle Scholar
  19. Göksungur Y, Üren S, Güvenç U (2005) Biosorption of cadmium and lead ions by ethanol treated waste baker’s yeast biomass. Bioresour Tech 96(1):103–109CrossRefGoogle Scholar
  20. Ho YS (2006) Review of second-order models for adsorption systems. J Hazard Mat 136(3):681–689Google Scholar
  21. Ho YS, Mckay G (2000) The kinetics of adsorption of divalent metal ions onto sphagnum moss flat. Water Res 34(3):735–742CrossRefGoogle Scholar
  22. Holan ZR, Volesky B (1994) Biosorption of lead and nickel by biomass of marine algae. Biotechnol Bioeng 43(11):1001–1009CrossRefGoogle Scholar
  23. Huang CP, Blankenship DW (1984) The removal of mercury(II) from dilute aqueous solution by activated carbon. Water Res 18(1):37–46CrossRefGoogle Scholar
  24. Kapoor A, Viraraghavan T (1998) Biosorption of heavy metals on Aspergillus niger: effect of pretreatment. Bioresour Technol 63(2):109–113CrossRefGoogle Scholar
  25. Kumar KV (2007) Pseudo second-order models for the adsorption of safranin onto activated carbon: comparison of linear and non-linear regression methods. J Harzard Mat 142(1–2):564–567CrossRefGoogle Scholar
  26. Lang W, Dejma C, Sirisansaneeyakul S, Sakairi N (2009) Biosorption of nonylphenol on dead biomass of Rhizopus arrhizus encapsulated in chitosan beads. Bioresour Tech 100(23):5616–5623CrossRefGoogle Scholar
  27. Metha SK, Guar JP (2005) Use of algae for removing heavy metal ions from wastewater: progress and prospects. Crit Rev Biotechnol 25(3):113–152CrossRefGoogle Scholar
  28. Muňoz Z, Moret A, Garcés S (2009) Assesment of chitosan for inhibition of Collectotrichum sp. on tomatoes and grapes. Crop Protect 28(1):36–40Google Scholar
  29. Nadavala KS, Swayampakula K, Boddu MV, Abburi K (2009) Biosorption of phenol and o-chlorophenol from aqueous solutions on to chitosan–calcium alginate blended beads. J Hazard Mat 162(1):482–489CrossRefGoogle Scholar
  30. Naja G, Mustin C, Berthelin J, Volesky B (2005) Lead biosorption study with Rhizopus arrhizus using a metal-based titration technique. J Colloid Interface Sci 292(2):537–543CrossRefGoogle Scholar
  31. Norton L, Baskaran K, Mckenzie T (2004) Biosorption of zinc from aqueous solutions using biosolids. Adv Environ Res 8(3–4):629–635CrossRefGoogle Scholar
  32. Okoye IA, Ejikeme MP, Onukwuli DO (2010) Lead removal from wastewater using fluted pumpkin seed shell activated carbon: adsorption modelling and kinetics. Int J Environ Sci Tech 7(4):793–800Google Scholar
  33. Ozdemir G, Ozturk T, Ceyhan N, Isler R, Cosar T (2003) Heavy metal biosorption by biomass of Ochrobactrum anthropi producing exopolysaccharide in activated sludge. Bioresour Tech 90(1):71–74CrossRefGoogle Scholar
  34. Pino GH, Mesquita LMS, Torem ML, Pinto GAS (2006a) Biosorption of heavy metals by powder of green coconut shell. Sep Sci Tech 41(14):3141–3153CrossRefGoogle Scholar
  35. Pino GH, Mesquita LMS, Torem ML, Pinto GAS (2006b) Biosorption of cadmium by powder of green coconut shell. Min Eng 19(5):380–387CrossRefGoogle Scholar
  36. Pluemsab W, Fukazawa Y, Furuike T, Nodasaka Y, Sakairi N (2007) Cyclodextrin-linked alginate beads as supporting materials for Sphingomonas cloacae, a nonylphenol degrading bacteria. Bioresour Technol 98(11):2076–2081CrossRefGoogle Scholar
  37. Preetha B, Viruthagirl T (2007) Batch and continuous biosorption of chromium (VI) by Rhizopus arrhizus. Sep Purif Technol 57(1):126–133CrossRefGoogle Scholar
  38. Preetha B, Viruthagirl T, Mohan SK (2003) Equilibrium and kinetic modelling: biosorption of nickel by Pseudomonas putida. Chem Eng World 38(9):87–89Google Scholar
  39. Ritchie AG (1977) Alternative to the Elovich equation for the kinetics of adsorption of gases on solids. J Chem Soc Faraday Trans 73:1650–1653CrossRefGoogle Scholar
  40. Sag Y, Ozer D, Kutsal T (1995) A comparative study of the biosorption of lead(II) ions to Z. Ramigera and R. arrhizus. Process Biochem 30(2):169–174Google Scholar
  41. Sari M, Tuzen M (2009) Kinetic and equilibrium studies of biosorption of Pb(II) and Cd(II) from aqueous solution by macrofungus (Amanita rubescens) biomass. J Hazard Mat 164(2–3):1004–1011CrossRefGoogle Scholar
  42. Sheng PX, Ting YP, Chen JP, Hong L (2004) Sorption of lead, copper, cadmium, zinc and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms. J Colloid Interface Sci 275(1):131–141CrossRefGoogle Scholar
  43. Singh A, Kumar D, Gaur JP (2008) Removal of Cu(II) and Pb(II) by Pithophora oedogonia: sorption, desorption and repeated use of the biomass. J Hazard Mat 152(3):1011–1019CrossRefGoogle Scholar
  44. Sobkowsk J, Czerwiński A (1974) Kinetics of carbon dioxide adsorption on a platinum electrode. J Electron Anal Chem 55(3):391–397Google Scholar
  45. Tsezos M, Volosy B (1982) The mechanism of uranium biosorption by Rhizopus arrhizus. Biotech Bioeng 24(2):385–401CrossRefGoogle Scholar
  46. Vaughan T, Seo WC, Marshall EW (2001) Removal of selected metal ions from aqueous solution using modified corncobs. Bioresour Technol 78(2):133–139CrossRefGoogle Scholar
  47. Vijayraghavan K, Jegan J, Palanivelu K, Velan M (2005) Biosorption of cobalt(II) and nickel(II) by seaweeds: batch and column studies. Sep Purif Technol 44(1):53–59CrossRefGoogle Scholar
  48. World Health Organization (WHO) (2003) Guidelines for drinking water quality. WHO, Geneva (WHO/SDE/WSH 03. 04)Google Scholar
  49. Yang XY, Al-Duri B (2005) Kinetic modeling of liquid-phase adsorption of reactive dyes on activated carbon. J Colloid Inter Sci 287(1):25–34CrossRefGoogle Scholar

Copyright information

© CEERS, IAU 2013

Authors and Affiliations

  • W. Lang
    • 1
    • 2
  • W. Buranaboripan
    • 3
    • 4
  • J. Wongchawalit
    • 1
  • P. Parakulsuksatid
    • 6
    • 7
  • W. Vanichsriratana
    • 6
    • 7
  • N. Sakairi
    • 4
  • W. Pathom-aree
    • 5
  • S. Sirisansaneeyakul
    • 6
    • 7
  1. 1.Department of Microbiology, Faculty of Liberal Arts and ScienceKasetsart UniversityNakhonpathomThailand
  2. 2.Laboratory of Molecular Enzymology, Research Faculty of AgricultureHokkaido UniversityKita-kuJapan
  3. 3.Department of Science, Faculty of Liberal Arts and ScienceKasetsart UniversityNakhonpathomThailand
  4. 4.Graduate School of Environmental ScienceHokkaido UniversityKita-kuJapan
  5. 5.Department of Biology, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
  6. 6.Department of Biotechnology, Faculty of Agro-IndustryKasetsart UniversityBangkokThailand
  7. 7.Center for Advanced Studies in Tropical Natural ResourcesNational Research University-Kasetsart University, Kasetsart UniversityChatuchakThailand

Personalised recommendations