Skip to main content

Advertisement

Log in

Biosorption of lead from acid solution using chitosan as a supporting material for spore forming-fungal biomass encapsulation

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Asexual spores of the filamentous fungus Rhizopus arrhizus were used as the resting biomass as they tolerate chitosan gelling for mycelia growing in chitosan beads. Biosorption of lead using the dead detergent pre-treated chitosan-immobilised and grown fungal beads was performed with initial lead (II) nitrate concentrations ranging from 9.02 to 281.65 mg/L. The adsorption data were best correlated with equilibrium adsorption isotherms in the order Redlich–Peterson, Langmuir, Freundlich and Fritz–Schlünder by non-linear regression. The biosorption kinetic model of pseudo second-order (R 2 > 0.99) fitted better than pseudo first-order and modified pseudo first-order models. Among the four pseudo second-order kinetic models, the Blanchard model was the best fit for the experimental biosorption data. The rate-limiting step of biosorption of lead was shown to be intraparticle diffusion controlled according to Weber and Morris model fitting. The beads could be regenerated using 1 M nitric acid solution. This illustrated the good performance of the beads for regenerated sorption/desorption at least five cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akar T, Tunali S (2006) Biosorption characteristics of Aspergillus flavus biomass for removal of Pb(II) and Cu(II) ions from an aqueous solution. Bioresour Technol 97(15):1780–1787

    Article  CAS  Google Scholar 

  • Akpor OB, Muchie M (2010) Remediation of heavy metals in drinking water and wastewater treatment systems: processes and applications: review. Int J Phys Sci 5(12):1807–1817

    CAS  Google Scholar 

  • Aksu Z (2001) Biosorption of reactive dyes by dried activated sludge: equilibrium and kinetic modeling. Biochem Eng J 7(1):79–84

    Article  CAS  Google Scholar 

  • Aksu Z, Balibek E (2007) Chromium(VI) biosorption by dried Rhizopus arrhizus: effect of salt (NaCl) concentration on equilibrium and kinetic parameters. J. Hazard. Mat 145(1–2):210–220

    Article  CAS  Google Scholar 

  • Aksu Z, Unsal A, Kutsal T (1997) Application of multicomponent adsorption isotherms to simultaneous biosorption of iron(III) and chromium(VI) on Chlorella vulgaris. J Chem Tech Biotech 70(4):368–378

    Article  CAS  Google Scholar 

  • An HK, Park YB, Kim SD (2001) Crab shell for the removal of heavy metals from aqueous solution. Water Res 35(15):3551–3556

    Article  CAS  Google Scholar 

  • Arica MY, Arpa Ç, Ergene A, Bayramoğlu G, Genç Ö (2003) Ca-alginate as a supper for Pb2+ and Zn2+ biosorption with immobilised Phanerochaete chrysosporium. Carbohydr Polym 52(2):167–174

    Article  Google Scholar 

  • Bayramoğlu G, Arica YM (2006) Biosorption of benzidine based textile dyes “Direct Blue 1 and Direct Red using native and heat-treated biomass of Trametes versicolor. J Hazard Mat 143(1–2):135–143

    Google Scholar 

  • Blanchard G, Maunaye M, Martin G (1984) Removal of heavy-metals from water waters by means of natural zeolites. Water Res 18(12):1501–1507

    Article  CAS  Google Scholar 

  • Bossrez S, Remacle J, Goyette J (1997) Adsorption of nickel by Enterococcus hirae cell walls. Chem Tech Biotech 70(1):45–50

    Article  CAS  Google Scholar 

  • Bueno BYM, Torem ML, Molina F, de Mesquita LMS (2008) Biosorption of lead(II), chromium(III) and copper(II) by R. opacus: equilibrium and kinetic studies. Miner Eng 21(1):65–75

    Article  CAS  Google Scholar 

  • Crist RH, Martim JR, Chanko J, Crist DR (1996) Uptake of metals on peat moss: an ion-exchange process. Environ Sci Tech 30(8):2456–2461

    Article  CAS  Google Scholar 

  • Deng L, Su Y, Su H, Wang X, Zhu X (2007) Sorption and desorption of lead(II) from wastewater by green algae Cladophora fascicularis. J Hazard Mat 143(1–2):220–225

    Article  CAS  Google Scholar 

  • Devika RB, Varsha BP (2006) Studies on effect of pH on cross-linking of chitosan with sodium tripolyphosphate: a technical note. AAPS Pharm Sci Tech 7(2):E138–E143

    Article  Google Scholar 

  • Friis N, Myers-Keith P (1986) Biosorption of uranium and lead by Streptomyces longwoodensis. Biotechnol Bioeng 28(1):21–28

    Article  CAS  Google Scholar 

  • Fritz W, Schlünder EV (1974) Simultaneous adsorption equilibria of organic solutes in dilute aqueous solutions on activated carbon. Chem Eng Sci 29(5):1279–1282

    Article  CAS  Google Scholar 

  • Gavrilescu M (2004) Removal of heavy metals from the environmental by biosorption. Eng Life Sci 4(3):219–232

    Article  CAS  Google Scholar 

  • Ghodbane I, Hamdaoui O (2008) Removal of mercury (II) from aqueous media using eucalyptus bark: kinetic and equilibrium studies. J Hazard Mat 160(2–3):301–309

    Article  CAS  Google Scholar 

  • Göksungur Y, Üren S, Güvenç U (2005) Biosorption of cadmium and lead ions by ethanol treated waste baker’s yeast biomass. Bioresour Tech 96(1):103–109

    Article  Google Scholar 

  • Ho YS (2006) Review of second-order models for adsorption systems. J Hazard Mat 136(3):681–689

    Google Scholar 

  • Ho YS, Mckay G (2000) The kinetics of adsorption of divalent metal ions onto sphagnum moss flat. Water Res 34(3):735–742

    Article  CAS  Google Scholar 

  • Holan ZR, Volesky B (1994) Biosorption of lead and nickel by biomass of marine algae. Biotechnol Bioeng 43(11):1001–1009

    Article  CAS  Google Scholar 

  • Huang CP, Blankenship DW (1984) The removal of mercury(II) from dilute aqueous solution by activated carbon. Water Res 18(1):37–46

    Article  CAS  Google Scholar 

  • Kapoor A, Viraraghavan T (1998) Biosorption of heavy metals on Aspergillus niger: effect of pretreatment. Bioresour Technol 63(2):109–113

    Article  CAS  Google Scholar 

  • Kumar KV (2007) Pseudo second-order models for the adsorption of safranin onto activated carbon: comparison of linear and non-linear regression methods. J Harzard Mat 142(1–2):564–567

    Article  CAS  Google Scholar 

  • Lang W, Dejma C, Sirisansaneeyakul S, Sakairi N (2009) Biosorption of nonylphenol on dead biomass of Rhizopus arrhizus encapsulated in chitosan beads. Bioresour Tech 100(23):5616–5623

    Article  CAS  Google Scholar 

  • Metha SK, Guar JP (2005) Use of algae for removing heavy metal ions from wastewater: progress and prospects. Crit Rev Biotechnol 25(3):113–152

    Article  Google Scholar 

  • Muňoz Z, Moret A, Garcés S (2009) Assesment of chitosan for inhibition of Collectotrichum sp. on tomatoes and grapes. Crop Protect 28(1):36–40

    Google Scholar 

  • Nadavala KS, Swayampakula K, Boddu MV, Abburi K (2009) Biosorption of phenol and o-chlorophenol from aqueous solutions on to chitosan–calcium alginate blended beads. J Hazard Mat 162(1):482–489

    Article  CAS  Google Scholar 

  • Naja G, Mustin C, Berthelin J, Volesky B (2005) Lead biosorption study with Rhizopus arrhizus using a metal-based titration technique. J Colloid Interface Sci 292(2):537–543

    Article  CAS  Google Scholar 

  • Norton L, Baskaran K, Mckenzie T (2004) Biosorption of zinc from aqueous solutions using biosolids. Adv Environ Res 8(3–4):629–635

    Article  CAS  Google Scholar 

  • Okoye IA, Ejikeme MP, Onukwuli DO (2010) Lead removal from wastewater using fluted pumpkin seed shell activated carbon: adsorption modelling and kinetics. Int J Environ Sci Tech 7(4):793–800

    CAS  Google Scholar 

  • Ozdemir G, Ozturk T, Ceyhan N, Isler R, Cosar T (2003) Heavy metal biosorption by biomass of Ochrobactrum anthropi producing exopolysaccharide in activated sludge. Bioresour Tech 90(1):71–74

    Article  CAS  Google Scholar 

  • Pino GH, Mesquita LMS, Torem ML, Pinto GAS (2006a) Biosorption of heavy metals by powder of green coconut shell. Sep Sci Tech 41(14):3141–3153

    Article  CAS  Google Scholar 

  • Pino GH, Mesquita LMS, Torem ML, Pinto GAS (2006b) Biosorption of cadmium by powder of green coconut shell. Min Eng 19(5):380–387

    Article  CAS  Google Scholar 

  • Pluemsab W, Fukazawa Y, Furuike T, Nodasaka Y, Sakairi N (2007) Cyclodextrin-linked alginate beads as supporting materials for Sphingomonas cloacae, a nonylphenol degrading bacteria. Bioresour Technol 98(11):2076–2081

    Article  CAS  Google Scholar 

  • Preetha B, Viruthagirl T (2007) Batch and continuous biosorption of chromium (VI) by Rhizopus arrhizus. Sep Purif Technol 57(1):126–133

    Article  CAS  Google Scholar 

  • Preetha B, Viruthagirl T, Mohan SK (2003) Equilibrium and kinetic modelling: biosorption of nickel by Pseudomonas putida. Chem Eng World 38(9):87–89

    CAS  Google Scholar 

  • Ritchie AG (1977) Alternative to the Elovich equation for the kinetics of adsorption of gases on solids. J Chem Soc Faraday Trans 73:1650–1653

    Article  CAS  Google Scholar 

  • Sag Y, Ozer D, Kutsal T (1995) A comparative study of the biosorption of lead(II) ions to Z. Ramigera and R. arrhizus. Process Biochem 30(2):169–174

    CAS  Google Scholar 

  • Sari M, Tuzen M (2009) Kinetic and equilibrium studies of biosorption of Pb(II) and Cd(II) from aqueous solution by macrofungus (Amanita rubescens) biomass. J Hazard Mat 164(2–3):1004–1011

    Article  CAS  Google Scholar 

  • Sheng PX, Ting YP, Chen JP, Hong L (2004) Sorption of lead, copper, cadmium, zinc and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms. J Colloid Interface Sci 275(1):131–141

    Article  CAS  Google Scholar 

  • Singh A, Kumar D, Gaur JP (2008) Removal of Cu(II) and Pb(II) by Pithophora oedogonia: sorption, desorption and repeated use of the biomass. J Hazard Mat 152(3):1011–1019

    Article  CAS  Google Scholar 

  • Sobkowsk J, Czerwiński A (1974) Kinetics of carbon dioxide adsorption on a platinum electrode. J Electron Anal Chem 55(3):391–397

    Google Scholar 

  • Tsezos M, Volosy B (1982) The mechanism of uranium biosorption by Rhizopus arrhizus. Biotech Bioeng 24(2):385–401

    Article  CAS  Google Scholar 

  • Vaughan T, Seo WC, Marshall EW (2001) Removal of selected metal ions from aqueous solution using modified corncobs. Bioresour Technol 78(2):133–139

    Article  CAS  Google Scholar 

  • Vijayraghavan K, Jegan J, Palanivelu K, Velan M (2005) Biosorption of cobalt(II) and nickel(II) by seaweeds: batch and column studies. Sep Purif Technol 44(1):53–59

    Article  Google Scholar 

  • World Health Organization (WHO) (2003) Guidelines for drinking water quality. WHO, Geneva (WHO/SDE/WSH 03. 04)

  • Yang XY, Al-Duri B (2005) Kinetic modeling of liquid-phase adsorption of reactive dyes on activated carbon. J Colloid Inter Sci 287(1):25–34

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Faculty of Liberal Arts and Science with a grant awarded in 2009 (FLAS.GR.WNL1.2009). The authors are grateful to Wilhelm J. Holzschuh of the Faculty of Liberal Arts and Science for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Lang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lang, W., Buranaboripan, W., Wongchawalit, J. et al. Biosorption of lead from acid solution using chitosan as a supporting material for spore forming-fungal biomass encapsulation. Int. J. Environ. Sci. Technol. 10, 579–590 (2013). https://doi.org/10.1007/s13762-012-0148-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-012-0148-1

Keywords

Navigation