Skip to main content

Identification of hydrogeochemical process linked to marine intrusion induced by pumping of a semiconfined mediterranean coastal aquifer

Abstract

This article analyses the hydrogeochemical processes, linked to the freshwater–seawater mixing zone, which can be caused by continuous pumping from a detrital coastal aquifer. It was necessary to construct an experimental plot, drilling three boreholes along a line perpendicular to the coast. A complete physico-chemical analysis was done of all water samples taken. The percentage of seawater, calculated from Chloride and 18Oxygen concentrations, varied between 55 and 90 %. The ionic deltas (Δ) calculated, and the saturation indices (SI) of mineral phases susceptible to precipitation or dissolution, allowed a series of hydrogeochemical processes to be identified that occur as a consequence of the advance of marine intrusion into the coastal band, and of aquifer flushing. Based on the major elements, the fraction of exchange (βI) was calculated for samples ranging from seawater to freshwater, and this revealed that differences in βI could explain the hydrochemistry of the mixing zone. The main processes recognised include precipitation of dolomite, dissolution of gypsum, fixation of sulphur salts and cation exchange. Most of the ion exchange took place between Na and Calcium + Magnesium ions. The process of fixation or liberation of these ions is probably determined by the advance or recession of the saline wedge, and/or by recharge during rainy periods. The behaviour of Magnesium is more sensitive to small variations in salinity, whilst Calcium behaves more homogeneously. The high percentage of seawater in the samples studied favours the speed and magnitude of processes such as ion exchange, and the intervention of magnesium is also a key.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Abdalla O, Ali M, Al-Higgi K, Al-zidi H, El-Hussain I, Al-Hinai S (2010) Rol of sea water intrusion estimated by geophysical methods in an arid area: Al-Khabourah, Oman. Hydrogeol J 18:1437–1445. doi:10.1007/s10040-010-0606-0

    Article  CAS  Google Scholar 

  2. Abd-Elhamid HF, Javadi AA (2011) A density-dependant finite element model for analysis of saltwater intrusion in coastal aquifers. J Hydrol 401:259–271. doi:10.1016/j.jhydrol.2011.02.028

    Article  Google Scholar 

  3. Andersen M, Nyvang V, Jakobsen R, Postma D (2005) Geochemical processes and solute transport at the seawater/freshwater interface of a sandy aquifer. Geochim Cosmochim Acta 69:3979–3994. doi:10.1016/j.gca.2005.03.017

    Article  CAS  Google Scholar 

  4. Appelo CAJ (1994) Cation and proton exchange, pH variations and carbonate reactions in a freshening aquifer. Water Resour Res 30:2793–2805. doi:10.1029/94WR01048

    Article  CAS  Google Scholar 

  5. Appelo CAJ, Postma D (2005) Geochemistry, groundwater, and pollution, 2nd edn. AA Balkema, Rotterdam

    Book  Google Scholar 

  6. Bear J, Chen D, Sorek S, Ouazar D, Herrera I (1999) Sea water intrusion in coastal aquifer: concepts, methods and practices. Kluwer Academic, Dordrecht

    Google Scholar 

  7. Beekman HE, Appelo CAJ (1990) Ion chromatography of fresh- and salt-water displacement: laboratory experiments and multicomponent transport modelling. J Contam Hydrol 7:21–37

    Article  Google Scholar 

  8. Boluda N, Gomis-Yagües V, Ruiz-Beviá F (2008) Influence of transport parameters and chemical properties of the sediment in experiments to measure reactive transport in seawater intrusion. J Hydrol 357:29–41. doi:10.1016/j.jhydrol.2008.04.021

    Article  Google Scholar 

  9. Bosch X, Custodio E (1993) Dissolution processes in the freshwater–saltwater mixing zone in the Cala Jostel area (Vandellós, Tarragona). In: Proceedings of the XII salt water intrusion meeting, CIMNE-UPC. Barcelona, pp 229–244

  10. Breeuwsma A, Wosten JH, Vleeshouwer JJ, Van Slobbe AM, Bouma J (1986) Derivation of land qualities to assess environmental problems from soil surveys. Soil Sci Soc Am J 50:186–190. doi:10.2136/sssaj1986.03615995005000010035x

    Article  Google Scholar 

  11. Cai WJ, Wang Y, Krest J, Moore WS (2003) The geochemistry of dissolved inorganic carbon in a surficial groundwater aquifer in North Inlet, South Carolina and the carbon fluxes to the coastal ocean. Geochim Cosmochim Acta 67:631–637. doi:10.1016/S0016-7037(02)01167-5

    Article  CAS  Google Scholar 

  12. Capaccioni B, Didero M, Paletta C, Didero L (2005) Saline intrusion and refreshening in a multilayer coastal aquifer in the Catania Plain (Sicilia, Southern Italy): dynamics of degradation processes according to the hydrochemical characteristics of groundwaters. J Hydrol 307:1–16. doi:10.1016/j.jhydrol.2004.08.037

    Article  CAS  Google Scholar 

  13. Carol E, Kruse E, Mas-Pla J (2009) Hydrochemical and isotopical evidence of ground water salinization processes on the coastal plain of Samborombón Bay, Argentina. J Hydrol 365:335–345. doi:10.1016/j.jhydrol.2008.11.041

    Article  CAS  Google Scholar 

  14. Cullimore DR (2008) Practical manual of groundwater microbiology, 2nd edn. CRC Press, Taylor & Francis Group, Boca Raton

    Google Scholar 

  15. de Montety V, Radakovitch O, Vallet-Coulomb C, Blavoux B, Hermitte D, Valles V (2008) Origin of groundwater salinity and hydrogeochemical processes in a confined coastal aquifer: case of the Rhône delta (Southern France). Appl Geochem 23:2337–2349. doi:10.1016/j.apgeochem.2008.03.011

    Article  Google Scholar 

  16. El Yaouti F, El Mandour A, Khattach D, Benavente J, Kaufmann O (2009) Salinization processes in the unconfined aquifer of Bou-Areg (NE Morocco): a geostatistical, geochemical, and tomographic study. Appl Geochem 24:16–31. doi:10.1016/j.apgeochem.2008.10.005

    Article  Google Scholar 

  17. Farber E, Vengosh A, Gavrieli I, Marie A, Bullen TD, Mayer B, Polak A, Shavit U (2007) The geochemistry of groundwater resources in the Jordan Valley: the impact of the Rift Valley brines. Appl Geochem 22:494–514. doi:10.1016/j.apgeochem.2006.12.002

    Article  CAS  Google Scholar 

  18. Fidelibus MD, Giménez E, Morell I, Tulipano L (1993) Salinization processes in the Castellon Plain aquifer. Study and Modelling of Saltwater Intrusion into Aquifers. CIMNE-UPC, Barcelona pp 267–283

  19. Gattacceca J, Vallet-Coulomb C, Mayer A, Claude C, Radakovitch O, Conchetto E, Hamelin B (2009) Isotopic and geochemical characterization of salinization in the shallow aquifers of a reclaimed subsiding zone: the southern Venice Lagoon coastland. J Hydrol 378:46–61. doi:10.1016/j.jhydrol.2009.09.005

    Article  CAS  Google Scholar 

  20. Ghabayen S, McKee M, Kemblowski M (2006) Ionic and isotopic ratios for identification of salinity sources and missing data in the Gaza aquifer. J Hydrol 318:360–373. doi:10.1016/j.jhydrol.2005.06.041

    Article  Google Scholar 

  21. Gomis-Yagües V, Boluda-Botella N, Ruiz-Beviá F (2000) Gypsum precipitation/dissolution as an explanation of the decrease of sulphate concentration during seawater intrusion. J Hydrol 228:48–55. doi:10.1016/S0022-1694(99)00207-3

    Article  Google Scholar 

  22. Gonfiantini R, Araguás L (1988) Los isótopos ambientales en el estudio de la intrusión marina. Simposio Internacional Tecnología de la Intrusión en Acuíferos Costeros, IGME, pp 135–190

    Google Scholar 

  23. Jorreto S, Pulido-Bosch A, Gisbert J, Sánchez-Martos F, Francés I (2009) The freshwater–seawater contact in coastal aquifers supporting intensive pumped seawater extractions: a case study. C R Geosci 341:993–2002. doi:10.016/J.CRTE.2009.08.001

    Article  Google Scholar 

  24. Kass A, Gavrieli I, Yechieli Y, Vengosh A, Starinsky A (2005) The impact of freshwater and wastewater irrigation on the chemistry of shallow groundwater: a case study from the Israeli Coastal Aquifer. J Hydrol 300:314–331. doi:10.1016/j.jhydrol.2004.06.013

    Article  CAS  Google Scholar 

  25. Khublaryan MG, Frolov AP, Yushmanov IO (2008) Sea water intrusion in coastal aquifer. Water Resour 35(3):274–286. doi:10.1134/S0097807808030032

    Article  CAS  Google Scholar 

  26. Kim Y, Lee KS, Koh DC, Lee DH, Lee SG, Park WB, Koh GW, Woo NC (2003) Hydrogeochemical and isotopic evidence of groundwater salinization in a coastal aquifer: a case study in Jeju volcanic island, Korea. J Hydrol 270:282–294

    Article  CAS  Google Scholar 

  27. Lázaro R, Rodrigo FS, Gutiérrez L, Domingo F, Puigdefábregas J (2001) Analysis of a 30 years rainfall record (1967–1997) in semi-arid SE Spain for implications on vegetation. J Arid Environ 48:373–395. doi:10.1006/jare.2000.0755

    Article  Google Scholar 

  28. Ma F, Yang YS, Yuan R, Cai Z, Pan S (2007) Study of shallow groundwater quality evolution under saline intrusion with environmental isotopes and geochemistry. Environ Geol 51:1009–1017. doi:10.1007/s00254-006-0370-6

    Article  CAS  Google Scholar 

  29. Magaritz M, Luzier JE (1985) Water–rock interactions and seawaterfreshwater mixing effects in the coastal dunes aquifer, Coos Bay, Oregon. Geochim Cosmochim Acta 49:2515–2525. doi:10.1016/0016-7037(85)90119-X

    Article  CAS  Google Scholar 

  30. Magaritz AM, Goldenberg L, Kafri U, Arad A (1980) Dolomite formation in the seawater–freshwater interface. Nature 287:622–624

    Article  CAS  Google Scholar 

  31. Martinez DE, Bocanegra EM (2002) Hydrogeochemistry and cation-exchange processes in the coastal aquifer of Mar Del Plata, Argentina. Hydrogeol J 10:393–408. doi:10.1007/s10040-002-0195-7

    Article  CAS  Google Scholar 

  32. Panteleit B, Hamer K, Kringel R, Kessels W, Schulz HD (2011) Geochemical processes in the saltwater–freshwater transition zone: comparing results of a sand tank experiment with field data. Environ Earth Sci 62:77–91. doi:10.1007/s12665-010-0499-1

    Google Scholar 

  33. Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version 2)—A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geol Surv Water Resour Invest Rep 99–4259

  34. Pulido-Bosch A, Sánchez-Martos F, Martínez-Vidal JL, Navarrete F (1992) Groundwater problems in a semiarid area (Low Andarax river, Almeria, Spain). Environ Geol 20:195–204. doi:10.1007/BF01706162

    CAS  Google Scholar 

  35. Pulido-Bosch A, Delgado J, Sola F, Vallejos A, Vicente F, López-Sánchez JM, Mallorquí J (2011) Identification of potential subsidence related to pumping in the Almería basin (SE Spain). Hydrol Process. doi:10.1002/hyp.8181

  36. Pulido-Leboeuf P (2004) Seawater intrusion and associated processes in a small coastal complex aquifer (Castell de Ferro, Spain). Appl Geochem 19:1517–1527. doi:10.1016/j.apgeochem.2004.02.004

    Article  CAS  Google Scholar 

  37. Rosenthal E, Vinokurov A, Ronen D, Magaritz M, Moshkovitz S (1992) Anthropogenically induced salinization of groundwater: a case study from the Coastal Plain aquifer of Israel. J Contam Hydrol 11:149–171

    Article  CAS  Google Scholar 

  38. Sánchez-Martos F, Pulido-Bosch A, Molina-Sánchez L, Vallejos-Izquierdo A (2002a) Identification of the origin of salinization in groundwater using minor ions (Lower Andarax, Southeast Spain). Sci Total Environ 297:43–58. doi:10.1016/S0048-9697(01)01011-7

    Article  Google Scholar 

  39. Sánchez-Martos F, Aguilera PA, Garrido-Frenich A, Torres JA, Pulido-Bosch A (2002b) Assessment of groundwater quality by means of self-organizing maps: application in a semiarid area. Environ Manag 30:716–726. doi:10.1007/s00267-2746-z

    Article  Google Scholar 

  40. Schiavo M, Hauser S, Povinec P (2009) Stable isotopes of water as a tool to study groundwater–seawater interactions in coastal south-eastern Sicily. J Hydrol 364:40–49. doi:10.1016/j.jhydrol.2008.10.005

    Article  Google Scholar 

  41. Sivan O, Yechieli Y, Herut B, Lazar B (2005) Geochemical evolution and timescale of seawater intrusion into the coastal aquifer of Israel. Geochim Cosmochim Acta 69:579–592. doi:10.1016/j.gca.2004.07.023

    Article  CAS  Google Scholar 

  42. Vengosh A, Spivack AJ, Artzi Y, Ayalon A (1999) Geochemical and boron, strontium, and oxygen isotopic constraints on the origin of the salinity in groundwater from the Mediterranean coast of Israel. Water Resour Res 35:1877–1894. doi:10.1029/1999WR900024

    Article  CAS  Google Scholar 

  43. Xue Y, Wu J, Ye S, Zhang Y (2000) Hydrogeological and hydrogeochemical studies for salt water intrusion on the South Coast of Laizhou Bay, China. Ground Water 38:38–45. doi:10.1111/j.1745-6584.2000.tb00200.x

    Article  CAS  Google Scholar 

  44. Yamanaka M, Kumagai Y (2006) Sulphur isotope constraint on the provenance of salinity in a confined aquifer system of the southwestern Nobi Plain, central Japan. J Hydrol 325:35–55. doi:10.1016/j.jhydrol.2005.09.026

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was undertaken within the framework of project 017/SGTB/2007/2.1. funded by the Spanish Ministry of the Environment and project CGL2007-63450/HID funded by the Spanish Ministry of Science. We also wish to express our gratitude to the members of OHL Medio Ambiente Inima and Spanish Geological Survey (IGME) that are collaborated in this project.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Vallejos.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sola, F., Vallejos, A., Moreno, L. et al. Identification of hydrogeochemical process linked to marine intrusion induced by pumping of a semiconfined mediterranean coastal aquifer. Int. J. Environ. Sci. Technol. 10, 63–76 (2013). https://doi.org/10.1007/s13762-012-0087-x

Download citation

Keywords

  • Groundwater–seawater relationship
  • Ionic exchange capacity
  • Stable isotopes
  • Water–rock interaction