Precipitation of carbonates by bacteria isolated from wastewater samples collected in a conventional wastewater treatment plant

  • A. Rivadeneyra Torres
  • M. V. Martinez-Toledo
  • A. Gonzalez-Martinez
  • J. Gonzalez-Lopez
  • D. Martín-Ramos
  • M. A. Rivadeneyra
Original Paper

Abstract

This research studied the precipitation of calcium carbonate by populations of bacteria from domestic wastewater cultivated in both natural and artificial solid culture media. The only carbonate-forming bacteria detected appeared in an artificial medium added with calcium acetate. Precipitation occurred three days after inoculation, and the percentage was slightly higher than 65 %. Our results showed that nine major carbonate-forming colony types were the dominant heterotrophic platable bacteria growing aerobically in artificial media added with calcium acetate. According to their taxonomic affiliations (based on partial sequencing of the 16S-rRNA), the nine strains belonged to the following nine genera of Gram-negative and Gram-positive bacteria: Caulobacter, Blastomonas, Roseobacter, Staphylococcus, Bacillus, Gemmatimonas, Saccharopolyspora, Microthrix, and Sphingomonas. All of these strains formed calcium carbonate, precipitated as calcite and vaterite in different proportions and shapes (spheres, hemispheres, dumbbells, and pseudopolyhedral forms). The results of this study suggest that in real domestic wastewater, the precipitation of carbonates through bacterial action could not take place in situ because the concentrations of calcium did not create the optimal circumstances for biomineralization. However, in the artificial media, it was possible to induce this process by adding calcium ions.

Keywords

Calcite Calcium carbonate Domestic wastewater Vaterite 

References

  1. Aloisi G, Gloter A, Krüger M, Wallman K, Guyot F, Zuddas P (2006) Nucleation of calcium carbonate on bacterial nanoglobules. Geology 34:1017–1020CrossRefGoogle Scholar
  2. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefGoogle Scholar
  3. Beveridge TJ, Fyfe WS (1985) Metal fixation by bacterial cell walls. Can J Earth Sci 22:1892–1898CrossRefGoogle Scholar
  4. Clesceri LS, Greenberg AE, Eaton AD (2001) Standard methods for the examination of water and wastewaters, 20th edn. American Public Health Association, Washington DC (APHA)Google Scholar
  5. Cortes-Lorenzo C, Molina-Muñoz ML, Gomez-Villalba B, Vilchez R, Ramos A, Rodelas B, Hontoria E, Gonzalez-Lopez J (2006) Analysis of community composition of biofilms in a submerged filter system for the removal of ammonia and phenol from industrial wastewater. Biochem Soc Trans 34:165–168CrossRefGoogle Scholar
  6. Delgado G, Delgado R, Parraga J, Rivadeneyra MA, Aranda V (2008) Precipitation of carbonates and phosphates by bacteria in extract solutions from a semi-arid saline soil. Influence of Ca2+ and Mg2+ concentrations and Mg2+/Ca2+ molar ratio in biomineralization. Geomicrobiol J 25:1–13CrossRefGoogle Scholar
  7. Dove PM, de Yoreo JJ, Weiner S (2003) Biomineralization. Reviews in Mineralogy and Geochemistry 54. Mineralogical Society of America Geochemical Society, WashingtonGoogle Scholar
  8. Ehrlich HL (2002) Geomicrobiology, 4th edn. Marcel Dekker, New YorkCrossRefGoogle Scholar
  9. Hammes F, Verstraete W (2002) Key roles of pH and calcium metabolism in microbial carbonate precipitation. Rev Environ Sci Biotechnol 1:3–7CrossRefGoogle Scholar
  10. Hammes F, Seka A, de Knijf S, Verstraete W (2003) A novel approach to calcium removal from calcium-rich industrial wastewater. Water Res 37:699–704CrossRefGoogle Scholar
  11. Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ (1998) Multiple sequence alignment with Clustal X. Trends Biochem Sci 23:403–405CrossRefGoogle Scholar
  12. Jenkins D, Richard MG, Daigger GT (1993) Manual on the causes and control of activated sludge bulking and foaming, 2nd edn. Lewis Publishers, New York, p 193Google Scholar
  13. Lowenstam HA, Weiner S (1989) On Biomineralization. Oxford University Press, OxfordGoogle Scholar
  14. Martín JD (2004) Using XPowder—a software package for powder X-ray diffraction analysis. http://www.xpowder.com. D.L. GR-1001/04. ISBN: 84-609-1497-6, 105 p. Spain
  15. Molina-Muñoz M, Poyatos JM, Vilchez R, Hontoria E, Rodelas B, Gonzalez-Lopez J (2007) Effect of the concentration of suspended solids on the enzymatic activities and biodiversity of a submerged membrane bioreactor for aerobic treatment of domestic wastewater. Appl Microbiol Biotechnol 73:1441–1451CrossRefGoogle Scholar
  16. Muyzer G (1999) DGGE/TGEE a method for identifying genes from natural ecosystems. Curr Opin Microbiol 2:317–322CrossRefGoogle Scholar
  17. Neefs JM, Van de Peer Y, Hendriks L, Wachter R (1990) Compilation of small ribosomal subunit RNA sequences. Nucleic Acids Res 18:2237–2317CrossRefGoogle Scholar
  18. Parraga J, Rivadeneyra MA, Martín-García JM, Delgado R, Delgado G (2004) Precipitation of carbonates by bacteria from a saline soil, in natural and artificial soil extracts. Geomicrobiol J 21:55–66CrossRefGoogle Scholar
  19. Rivadeneyra MA, Delgado G, Ramos-Cormenzana A, Delgado R (1998) Biomineralization of carbonates by Halomonas eurihalina in solid and liquid media with different salinities: crystal formation sequence. Res Microbiol 149:277–286CrossRefGoogle Scholar
  20. Rivadeneyra MA, Delgado G, Soriano M, Ramos-Cormenzana A, Delgado R (1999) Biomineralization of carbonates by Marinococcus albus and Marinococcus halophilus isolated from the Salar de Atacama (Chile). Curr Microbiol 39:53–57CrossRefGoogle Scholar
  21. Rivadeneyra MA, Delgado G, Soriano M, Ramos-Cormenzana A, Delgado R (2000) Precipitation of carbonates by Nesterenkonia halobia in liquid media. Chemosphere 41:617–624CrossRefGoogle Scholar
  22. Rivadeneyra MA, Párraga J, Delgado R, Ramos-Cormenzana A, Delgado G (2004) Biomineralization of carbonates by Halobacillus trueperi in solid and liquid media with different salinities. FEMS Microbiol Ecol 48:39–46CrossRefGoogle Scholar
  23. Rivadeneyra MA, Martín-Algarra A, Sánchez-Navas A, Martín-Ramos D (2006a) Carbonate and phosphate precipitation by Chromohalobacter marismortui. Geomicrobiol J 23:1–13CrossRefGoogle Scholar
  24. Rivadeneyra MA, Delgado R, Parraga J, Ramos-Cormenzana A, Delgado G (2006b) Precipitation of minerals by 22 species of moderately halophilic bacteria in artificial marine salts media: influence of salt concentration. Folia Microbiol 51:445–453CrossRefGoogle Scholar
  25. Rivadeneyra MA, Martín-Algarra A, Sánchez-Román M, Sánchez-Navas A, Martín-Ramos D (2010) Amorphous caphosphate precursors for Ca-carbonate biominerals mediated by Chromohalobacter marismortui. ISME J. doi:10.1038/ismej.2010.17 Google Scholar
  26. Sánchez-Navas A, Martín-Algarra A, Rivadeneyra MA, Melchor S, Martín-Ramos JD (2009) Crystal-growth behavior Ca–Mg carbonate bacterial spherulites. Cryst Growth Des 9:2690–2699CrossRefGoogle Scholar
  27. Sánchez-Román M, Rivadeneyra MA, Vasconcelos C, McKenzie JA (2007) Biomineralization of carbonate and phosphate by halophilic bacteria: influence of Ca2 + and Mg2 + ions. FEMS Microbiol Ecol 61:273–281CrossRefGoogle Scholar
  28. Sánchez-Román M, Vasconcelos C, Schmid T, Dittrich M, McKenzie JA, Zenobi R, Rivadeneyra MA (2008) Aerobic microbial dolomite at the nanometer scale: implications for the geologic record. Geology 36:879–882CrossRefGoogle Scholar
  29. Straful I, Scrimshaw MD, Lester JN (2001) Conditions influencing the precipitation of magnesium ammonium phosphate. Water Res 35:4191–4199CrossRefGoogle Scholar
  30. van Lith Y, Warthmann R, Vasconcelos C, McKenzie JA (2003) Microbial fossilization in carbonate sediments: a result of the bacterial surface involvement in carbonate precipitation. Sedimentology 50:237–245CrossRefGoogle Scholar
  31. Vinuesa P, Rademaker JL, Bruijn W, Werner D (1998) Genotypic characterization of Bradyrhizobium strains nodulating endemic woody legumes of the Canary Islands by PCR-restriction fragment length polymorphism analysis of genes encoding 16S rRNA (16S rDNA) and 16S–23S rDNA intergenic spacers, repetitive extragenic palindromic PCR genomic fingerprinting and partial 16S rDNA sequencing. Appl Environ Microbiol 64:2096–2104Google Scholar
  32. Wagner M, Loy A, Nogerira R, Purkhold U, Lee N, Daims H (2002) Microbial community composition and function in wastewater treatment plant. Antonie Van Leeuwenhoek 81:665–680CrossRefGoogle Scholar
  33. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173(2):697–703Google Scholar

Copyright information

© CEERS, IAU 2012

Authors and Affiliations

  • A. Rivadeneyra Torres
    • 1
  • M. V. Martinez-Toledo
    • 2
  • A. Gonzalez-Martinez
    • 3
  • J. Gonzalez-Lopez
    • 4
  • D. Martín-Ramos
    • 5
  • M. A. Rivadeneyra
    • 4
  1. 1.Departamento de Electrónica y Tecnología de Computadores, Escuela Técnica Superior de Ingenierías Informática y de TelecomunicaciónUniversidad de GranadaGranadaSpain
  2. 2.Departamento de Microbiología, Facultad de CienciasUniversidad de GranadaGranadaSpain
  3. 3.Departamento de Ingeniería Civil, ETS Ingenieros de Caminos Canales y PuertosUniversidad de GranadaGranadaSpain
  4. 4.Departamento de Microbiología, Facultad de FarmaciaUniversidad de GranadaGranadaSpain
  5. 5.Departamento de Mineralogía y Petrología, Facultad de CienciasUniversidad de GranadaGranadaSpain

Personalised recommendations