Skip to main content

Advertisement

Log in

Volume changes of hippocampal and amygdala subfields in patients with mild cognitive impairment and Alzheimer’s disease

  • Original article
  • Published:
Acta Neurologica Belgica Aims and scope Submit manuscript

Abstract

Background

Automated segmentation of hippocampal and amygdala subfields could improve classification accuracy of Mild Cognitive Impairments (MCI) and Alzheimer’s Disease (AD) individuals.

Methods

We applied T1-weighted magnetic resonance imaging (MRI) for 21 AD, 39 MCI and 32 normal control (NC) participants at 3-Tesla MRI. Twelve hippocampal subfields and 9 amygdala subfields in each hemisphere were analyzed using FreeSurfer 6.0.

Results

Smaller volumes were observed in right/left whole hippocampus, right/left hippocampal tail, right/left subiculum, right Cornu ammonis 1(CA1), right/left molecular layer, right granule cell-molecular layer-dentate gyrus (GC-ML-DG), right CA4, right fimbria, right whole amygdala, right/left accessory basal, right anterior amygdala area, left central, left medial and right/left cortical nucleus of AD group compared to both MCI and NC groups (p < 0.001). The volumes of right presubiculum, right CA3, right hippocampus-amygdala-transition-area (HATA), right lateral, right basal, right central, right medial, right cortico-amygdaloid transition (CAT) and right paralaminar nucleus were significantly larger in NC than AD group (p ≤ 0.001), while the volumes of right subiculum, right CA1, right molecular layer, right whole hippocampus, right whole amygdala, right basal and right accessory basal were significantly larger in NC than MCI group (p ≤ 0.002). Trend analysis showed that most hippocampus and amygdala subfields have a trend of atrophy with the decline of cognitive function. Six core components were identified by the hierarchical clustering. The combined Receiver operating characteristic (ROC) analysis achieved the diagnostic performances (AUC: 0.81) in differentiating AD from MCI; (AUC: 0.79) in differentiating MCI from NC and (AUC: 0.97) in differentiating AD from NC.

Conclusions

Volumetric differences of hippocampus and amygdala were at a finer subfields scale, and the volumes of right basal nucleus, left parasubiculum, left medial nucleus, left GC-ML-DG, left hippocampal fissure, and right fimbria can be employed as neuroimaging biomarkers to assist the clinical diagnosis of MCI and AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC et al (2011) The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dementia 7(3):270–279. https://doi.org/10.1016/j.jalz.2011.03.008

    Article  PubMed  Google Scholar 

  2. Petersen RC (2004) Mild cognitive impairment as a diagnostic entity. J Intern Med 256(3):183–194. https://doi.org/10.1111/j.1365-2796.2004.01388.x

    Article  CAS  PubMed  Google Scholar 

  3. Petersen RC, Doody R, Kurz A, Mohs RC, Morris JC, Rabins PV et al (2001) Current concepts in mild cognitive impairment. Arch Neurol 58(12):1985. https://doi.org/10.1001/archneur.58.12.1985

    Article  CAS  PubMed  Google Scholar 

  4. McDade E, Bateman RJ (2017) Stop Alzheimer’s before it starts. Nature 547(7662):153–155. https://doi.org/10.1038/547153a

    Article  CAS  PubMed  Google Scholar 

  5. Wang Z, Zhu H, Yuan M, Li Y, Qiu C, Ren Z et al (2020) The resting-state functional connectivity of amygdala subregions associated with post-traumatic stress symptom and sleep quality in trauma survivors. Eur Arch Psychiatry Clin Neurosci. https://doi.org/10.1007/s00406-020-01104-3

    Article  PubMed  PubMed Central  Google Scholar 

  6. Yan T, Wang Y, Weng Z, Du W, Liu T, Chen D et al (2019) Early-stage identification and pathological development of Alzheimer’s disease using multimodal MRI. J Alzheimers Dis 68(3):1013–1027. https://doi.org/10.3233/jad-181049

    Article  PubMed  Google Scholar 

  7. Zhao W, Luo Y, Zhao L, Mok V, Su L, Yin C et al (2019) Automated Brain MRI volumetry differentiates early stages of alzheimer’s disease from normal aging. J Geriatr Psychiatry Neurol 32(6):354–364. https://doi.org/10.1177/0891988719862637

    Article  PubMed  Google Scholar 

  8. Chételat G (2018) Multimodal neuroimaging in Alzheimer’s disease: early diagnosis, physiopathological mechanisms, and impact of lifestyle. J Alzheimers Dis 64(s1):S199-s211. https://doi.org/10.3233/jad-179920

    Article  PubMed  PubMed Central  Google Scholar 

  9. Archer HA, Kennedy J, Barnes J, Pepple T, Boyes R, Randlesome K et al (2010) Memory complaints and increased rates of brain atrophy: risk factors for mild cognitive impairment and Alzheimer’s disease. Int J Geriatr Psychiatry 25(11):1119–1126. https://doi.org/10.1002/gps.2440

    Article  CAS  PubMed  Google Scholar 

  10. Eckerström C, Olsson E, Ekholm S, Rolstad S, Starck G, Edman A et al (2008) Small baseline volume of left hippocampus is associated with subsequent conversion of MCI into dementia: The Göteborg MCI study. J Neurol Sci 272(1–2):48–59. https://doi.org/10.1016/j.jns.2008.04.024

    Article  PubMed  Google Scholar 

  11. Henneman WJ, Vrenken H, Barnes J, Sluimer IC, Verwey NA, Blankenstein MA et al (2009) Baseline CSF p-tau levels independently predict progression of hippocampal atrophy in Alzheimer disease. Neurology 73(12):935–940. https://doi.org/10.1212/WNL.0b013e3181b879ac

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Villemagne VL, Burnham S, Bourgeat P, Brown B, Ellis KA, Salvado O et al (2013) Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: a prospective cohort study. Lancet Neurol 12(4):357–367. https://doi.org/10.1016/s1474-4422(13)70044-9

    Article  CAS  PubMed  Google Scholar 

  13. Wang PN, Liu HC, Lirng JF, Lin KN, Wu ZA (2009) Accelerated hippocampal atrophy rates in stable and progressive amnestic mild cognitive impairment. Psychiatry Res 171(3):221–231. https://doi.org/10.1016/j.pscychresns.2008.05.002

    Article  PubMed  Google Scholar 

  14. Jack CR Jr, Shiung MM, Weigand SD, O’Brien PC, Gunter JL, Boeve, et al (2005) Brain atrophy rates predict subsequent clinical conversion in normal elderly and amnestic MCI. Neurology 65(8):1227–1231. https://doi.org/10.1212/01.wnl.0000180958.22678.91

    Article  PubMed  Google Scholar 

  15. de Flores R, La Joie R, Landeau B, Perrotin A, Mézenge F, de La Sayette V et al (2015) Effects of age and Alzheimer’s disease on hippocampal subfields: comparison between manual and FreeSurfer volumetry. Hum Brain Mapp 36(2):463–474. https://doi.org/10.1002/hbm.22640

    Article  PubMed  Google Scholar 

  16. Iglesias JE, Augustinack JC, Nguyen K, Player CM, Player A, Wright M et al (2015) A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: Application to adaptive segmentation of in vivo MRI. Neuroimage 115(1):117–137. https://doi.org/10.1016/j.neuroimage.2015.04.042

    Article  PubMed  Google Scholar 

  17. La Joie R, Fouquet M, Mézenge F, Landeau B, Villain N, Mevel K et al (2010) Differential effect of age on hippocampal subfields assessed using a new high-resolution 3T MR sequence. Neuroimage 53(2):506–514. https://doi.org/10.1016/j.neuroimage.2010.06.024

    Article  PubMed  Google Scholar 

  18. La Joie R, Perrotin A, de La Sayette V, Egret S, Doeuvre L, Belliard S et al (2013) Hippocampal subfield volumetry in mild cognitive impairment, Alzheimer’s disease and semantic dementia. Neuroimage Clin 3:155–162. https://doi.org/10.1016/j.nicl.2013.08.007

    Article  PubMed  PubMed Central  Google Scholar 

  19. Worker A, Dima D, Combes A, Crum WR, Streffer J, Einstein S et al (2018) Test-retest reliability and longitudinal analysis of automated hippocampal subregion volumes in healthy ageing and Alzheimer’s disease populations. Hum Brain Mapp 39(4):1743–1754. https://doi.org/10.1002/hbm.23948

    Article  PubMed  PubMed Central  Google Scholar 

  20. DeVivo R, Zajac L, Mian A, Cervantes-Arslanian A, Steinberg E, Alosco ML et al (2019) Differentiating Between Healthy Control Participants and Those with Mild Cognitive Impairment Using Volumetric MRI Data. J Int Neuropsychol Soc 25(8):800–810. https://doi.org/10.1017/S135561771900047X

    Article  PubMed  PubMed Central  Google Scholar 

  21. Luo Y, Cao Z, Liu Y, Wu L, Shan H, Liu Y et al (2016) T2 signal intensity and volume abnormalities of hippocampal subregions in patients with amnestic mild cognitive impairment by magnetic resonance imaging. Int J Neurosci 126(10):904–911. https://doi.org/10.3109/00207454.2015.1083018

    Article  PubMed  Google Scholar 

  22. Pessoa L (2008) On the relationship between emotion and cognition. Nat Rev Neurosci 9(2):148–158. https://doi.org/10.1038/nrn2317

    Article  CAS  PubMed  Google Scholar 

  23. Pessoa L, Adolphs R (2010) Emotion processing and the amygdala: from a “low road” to “many roads” of evaluating biological significance. Nat Rev Neurosci 11(11):773–783. https://doi.org/10.1038/nrn2920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Miller MI, Younes L, Ratnanather JT, Brown T, Reigel T, Trinh H et al (2012) Amygdala Atrophy in MCI/Alzheimer’s Disease in the BIOCARD cohort based on Diffeomorphic Morphometry. Med Image Comput Comput Assist Interv 2012:155–166

    PubMed  PubMed Central  Google Scholar 

  25. Yue L, Wang T, Wang J, Li G, Wang J, Li X et al (2018) Asymmetry of Hippocampus and Amygdala Defect in Subjective Cognitive Decline Among the Community Dwelling Chinese. Front Psychiatry 9:226. https://doi.org/10.3389/fpsyt.2018.00226

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zanchi D, Giannakopoulos P, Borgwardt S, Rodriguez C, Haller S (2017) Hippocampal and Amygdala Gray Matter Loss in Elderly Controls with Subtle Cognitive Decline. Front Aging Neurosci 9:50. https://doi.org/10.3389/fnagi.2017.00050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang C, Kong M, Wei H, Zhang H, Ma G, Ba M (2020) The effect of ApoE ε 4 on clinical and structural MRI markers in prodromal Alzheimer’s disease. Quant Imaging Med Surg 10:464–474. https://doi.org/10.21037/qims.2020.01.14

    Article  PubMed  PubMed Central  Google Scholar 

  28. Cuénod, C. A., Denys, A., Michot, J. L., Jehenson, P., Forette, F., Kaplan, D., . . . Boller, F. (1993). Amygdala atrophy in Alzheimer's disease. An in vivo magnetic resonance imaging study. Arch Neurol, 50(9), 941–945. doi:https://doi.org/10.1001/archneur.1993.00540090046009

  29. Fjell, A. M., Walhovd, K. B., Fennema-Notestine, C., McEvoy, L. K., Hagler, D. J., Holland, D., . . . Dale, A. M. (2009). One-year brain atrophy evident in healthy aging. J Neurosci, 29(48), 15223–15231. doi:https://doi.org/10.1523/jneurosci.3252-09.2009

  30. Poulin SP, Dautoff R, Morris JC, Barrett LF, Dickerson BC (2011) Amygdala atrophy is prominent in early Alzheimer’s disease and relates to symptom severity. Psychiatry Res 194(1):7–13. https://doi.org/10.1016/j.pscychresns.2011.06.014

    Article  PubMed  PubMed Central  Google Scholar 

  31. Scott SA, DeKosky ST, Sparks DL, Knox CA, Scheff SW (1992) Amygdala cell loss and atrophy in Alzheimer’s disease. Ann Neurol 32(4):555–563. https://doi.org/10.1002/ana.410320412

    Article  CAS  PubMed  Google Scholar 

  32. Luning W, Hengge X, Zhenfu W, Liuquan C, Funan H (2000) MRI measurement of hippocampus and amygdala in Alzheimer’s disease, vascular dementia and mild cognitive impairment. Neurobiol Aging 21:251. https://doi.org/10.1016/S0197-4580(00)83469-7

    Article  Google Scholar 

  33. Miller MI, Younes L, Ratnanather JT, Brown T, Trinh H, Lee DS et al (2015) Amygdalar atrophy in symptomatic Alzheimer’s disease based on diffeomorphometry: the BIOCARD cohort. Neurobiol Aging 36(Suppl 1):S3-s10. https://doi.org/10.1016/j.neurobiolaging.2014.06.032

    Article  PubMed  Google Scholar 

  34. Tang X, Holland D, Dale AM, Younes L, Miller MI (2015) The diffeomorphometry of regional shape change rates and its relevance to cognitive deterioration in mild cognitive impairment and Alzheimer’s disease. Hum Brain Mapp 36(6):2093–2117. https://doi.org/10.1002/hbm.22758

    Article  PubMed  PubMed Central  Google Scholar 

  35. Woolston A, Tu YK, Baxter PD, Gilthorpe MS (2012) A comparison of different approaches to unravel the latent structure within metabolic syndrome. PLoS ONE 7(4):e34410. https://doi.org/10.1371/journal.pone.0034410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jack CR Jr, Albert MS, Knopman DS, McKhann GM, Sperling RA, Carrillo MC et al (2011) Introduction to the recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 7:257–262. https://doi.org/10.1016/j.jalz.2011.03.004

    Article  PubMed  PubMed Central  Google Scholar 

  37. Cooper, J. (2001). Diagnostic and Statistical Manual of Mental Disorders (4th edn, text revision) (DSM–IV–TR) Washington, DC: American Psychiatric Association 2000. 943. ISBN 0 89042 025 4. Brit J Psychiat, 179(1), 85–85. doi:https://doi.org/10.1192/bjp.179.1.85-a

  38. Saygin ZM, Kliemann D, Iglesias JE, van der Kouwe AJW, Boyd E, Reuter M et al (2017) High-resolution magnetic resonance imaging reveals nuclei of the human amygdala: manual segmentation to automatic atlas. Neuroimage 155:370–382. https://doi.org/10.1016/j.neuroimage.2017.04.046

    Article  CAS  PubMed  Google Scholar 

  39. Whelan CD, Hibar DP, van Velzen LS, Zannas AS, Carrillo-Roa T, McMahon K et al (2016) Heritability and reliability of automatically segmented human hippocampal formation subregions. Neuroimage 128:125–137. https://doi.org/10.1016/j.neuroimage.2015.12.039

    Article  PubMed  Google Scholar 

  40. Udo T, McKee SA, White MA, Masheb RM, Barnes RD, Grilo CM (2014) The factor structure of the metabolic syndrome in obese individuals with binge eating disorder. J Psychosom Res 76(2):152–157. https://doi.org/10.1016/j.jpsychores.2013.10.007

    Article  PubMed  Google Scholar 

  41. Frölich L, Peters O, Lewczuk P et al (2017) Incremental value of biomarker combinations to predict progression of mild cognitive impairment to Alzheimer’s dementia. Alzheimers Res Ther. 9(1):84. https://doi.org/10.1186/s13195-017-0301-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gabere M, Thu Pham NT, Graff-Radford J et al (2020) Automated hippocampal subfield volumetric analyses in atypical Alzheimer’s disease. J Alzheimers Dis 78(3):927–937. https://doi.org/10.3233/JAD-200625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zheng F, Cui D, Zhang L et al (2018) The volume of hippocampal subfields in relation to decline of memory recall across the adult lifespan. Front Aging Neurosci. 10:320. https://doi.org/10.3389/fnagi.2018.00320

    Article  PubMed  PubMed Central  Google Scholar 

  44. Schönheit B, Zarski R, Ohm TG (2004) Spatial and temporal relationships between plaques and tangles in Alzheimer-pathology. Neurobiol Aging 25(6):697–711. https://doi.org/10.1016/j.neurobiolaging.2003.09.009

    Article  PubMed  Google Scholar 

  45. van Strien NM, Cappaert NL, Witter MP (2009) The anatomy of memory: an interactive overview of the parahippocampal-hippocampal network. Nat Rev Neurosci 10(4):272–282. https://doi.org/10.1038/nrn2614

    Article  CAS  PubMed  Google Scholar 

  46. Kang DW, Lim HK, Joo SH, Lee NR, Lee CU (2018) The association between hippocampal subfield volumes and education in cognitively normal older adults and amnestic mild cognitive impairment patients. Neuropsychiatr Dis Treat 14:143–152. https://doi.org/10.2147/ndt.s151659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Toner CK, Pirogovsky E, Kirwan CB, Gilbert PE (2009) Visual object pattern separation deficits in nondemented older adults. Learn Mem 16(5):338–342. https://doi.org/10.1101/lm.1315109

    Article  PubMed  Google Scholar 

  48. Yao H, Liu Y, Zhou B, Zhang Z, An N, Wang P et al (2013) Decreased functional connectivity of the amygdala in Alzheimer’s disease revealed by resting-state fMRI. Eur J Radiol 82(9):1531–1538. https://doi.org/10.1016/j.ejrad.2013.03.019

    Article  PubMed  Google Scholar 

  49. Panza F, Frisardi V, Capurso C, D’Introno A, Colacicco AM, Imbimbo BP et al (2010) Late-life depression, mild cognitive impairment, and dementia: possible continuum? Am J Geriatr Psychiatry 18(2):98–116. https://doi.org/10.1097/JGP.0b013e3181b0fa13

    Article  PubMed  Google Scholar 

  50. Shi YN, Fang LX, Yang LL, Sun QH (2017) Independent relationship between mild cognitive impairment and depression. Modern Prev Med

  51. Zou H, Li Z, Wang L, Liu S, Zhang F (2017) Mild cognitive impairment and depression among community dewlling elderly in China. Innovation Aging 1:1. https://doi.org/10.1093/geroni/igx004.3312

    Article  Google Scholar 

  52. Burke WJ, Roccaforte WH, Wengel SP (1991) The short form of the Geriatric Depression Scale: a comparison with the 30-item form. J Geriatr Psychiatry Neurol 4(3):173–178. https://doi.org/10.1177/089198879100400310

    Article  CAS  PubMed  Google Scholar 

  53. Baxter MG, Murray EA (2002) The amygdala and reward. Nat Rev Neurosci 3(7):563–573. https://doi.org/10.1038/nrn875

    Article  CAS  PubMed  Google Scholar 

  54. Kalin NH, Shelton SE, Davidson RJ (2004) The role of the central nucleus of the amygdala in mediating fear and anxiety in the primate. J Neurosci 24(24):5506. https://doi.org/10.1523/JNEUROSCI.0292-04.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ledoux J, Schiller D (2009) The human amygdala: Insights from other animals. In: Whalen PJ, Phelps EA (eds) The human amygdala. Guilford Press; New York

    Google Scholar 

  56. Shrestha P, Shan Z, Mamcarz M, Ruiz KSA, Zerihoun AT, Juan C-Y et al (2020) Amygdala inhibitory neurons as loci for translation in emotional memories. Nature 586(7829):407–411. https://doi.org/10.1038/s41586-020-2793-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fraser MA, Shaw ME, Anstey KJ, Cherbuin N (2018) Longitudinal assessment of hippocampal atrophy in midlife and early old age: contrasting manual tracing and semi-automated segmentation (FreeSurfer). Brain Topogr 31(6):949–962. https://doi.org/10.1007/s10548-018-0659-2

    Article  PubMed  Google Scholar 

  58. Zhao H, Li X, Wu W, Li Z, Qian L, Li S et al (2015) Atrophic Patterns of the Frontal-Subcortical Circuits in Patients with Mild Cognitive Impairment and Alzheimer’s Disease. PLoS ONE 10(6):e0130017. https://doi.org/10.1371/journal.pone.0130017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hajian-Tilaki K (2013) Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation. Caspian J Intern Med 4(2):627–635

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Dou Weiqiang for his help in completing this study.

Funding

This study was funded by the National Natural Science Foundation of China (No. 82001512), the General projects of Jiangsu Science and technology plan (No. BK20211118), the General project of medical scientific research of Jiangsu Provincial Health Commission (No. M2021044), the Natural Science Foundation of the Jiangsu Higher Education Institution of China (16KJD320006) and the Scientific Research Foundation for Excellent Talents of Xuzhou Medical University (D2014015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunhong Hu.

Ethics declarations

Ethical approval

The study was approved by the Clinical Research Ethics Committee of Affiliated Hospital of Yangzhou University, and the MR Images were obtained with informed consent.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOC 1299 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, H., Ge, H., Wang, L. et al. Volume changes of hippocampal and amygdala subfields in patients with mild cognitive impairment and Alzheimer’s disease. Acta Neurol Belg 123, 1381–1393 (2023). https://doi.org/10.1007/s13760-023-02235-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13760-023-02235-9

Keywords

Navigation