Skip to main content

Advertisement

Log in

A novel missense variant in the LMNB2 gene causes progressive myoclonus epilepsy

  • Original article
  • Published:
Acta Neurologica Belgica Aims and scope Submit manuscript

Abstract

Progressive myoclonus epilepsies (PMEs) are a group of disorders embracing myoclonus, seizures, and neurological dysfunctions. Because of the genetic and clinical heterogeneity, a large proportion of PMEs cases have remained molecularly undiagnosed. The present study aimed to determine the underlying genetic factors that contribute to the PME phenotype in an Iranian female patient. We describe a consanguineous Iranian family with autosomal recessive PME that had remained undiagnosed despite extensive genetic and pathological tests. After performing neuroimaging and clinical examinations, due to heterogeneity of PMEs, the proband was subjected to paired-end whole-exome sequencing and the candidate variant was confirmed by Sanger sequencing. Various in-silico tools were also used to predict the pathogenicity of the variant. In this study, we identified a novel homozygous missense variant (NM_032737.4:c.472C > T; p.(Arg158Trp)) in the LMNB2 gene (OMIM: 150341) as the most likely disease-causing variant. Neuroimaging revealed a progressive significant generalized atrophy in the cerebral and cerebellum without significant white matter signal changes. Video-electroencephalography monitoring showed a generalized pattern of high-voltage sharp waves in addition to multifocal spikes and waves compatible with mixed type seizures and epileptic encephalopathic pattern. Herein, we introduce the second case of PME caused by a novel variant in the LMNB2 gene. This study also underscores the potentiality of next-generation sequencing in the genetic diagnosis of patients with neurologic diseases with an unknown cause.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Human variant and phenotypes have been reported to ClinVar (Accession number: SCV001448673; https://www.ncbi.nlm.nih.gov/clinvar/SCV001448673) and LOVD (individual ID: 00324284; https://databases.lovd.nl/shared/individuals/00324284).

Code availability

None.

References

  1. Shorvon SD (2011) The etiologic classification of epilepsy. Epilepsia 52(6):1052–1057. https://doi.org/10.1111/j.1528-1167.2011.03041.x

    Article  PubMed  Google Scholar 

  2. Jansen AC, Andermann E (2021) Progressive myoclonus epilepsy, Lafora type. In: GeneReviews®[Internet]. University of Washington, Seattle

  3. Bhat S, Ganesh S (2018) New discoveries in progressive myoclonus epilepsies: a clinical outlook. Expert Rev Neurother 18(8):649–667. https://doi.org/10.1080/14737175.2018.1503949

    Article  CAS  PubMed  Google Scholar 

  4. Franceschetti S, Michelucci R, Canafoglia L, Striano P, Gambardella A, Magaudda A, Tinuper P, La Neve A, Ferlazzo E, Gobbi G (2014) Progressive myoclonic epilepsies: definitive and still undetermined causes. Neurology 82(5):405–411. https://doi.org/10.1212/wnl.0000000000000077

    Article  PubMed Central  PubMed  Google Scholar 

  5. Orsini A, Valetto A, Bertini V, Esposito M, Carli N, Minassian BA, Bonuccelli A, Peroni D, Michelucci R, Striano P (2019) The best evidence for progressive myoclonic epilepsy: a pathway to precision therapy. Seizure 71:247–257. https://doi.org/10.1016/j.seizure.2019.08.012

    Article  PubMed Central  PubMed  Google Scholar 

  6. Balint B, Bhatia KP (2015) Myoclonus, epilepsy, and ataxia resulting from potassium channel gene mutation: expanding the spectrum underlying ramsay hunt syndrome. Movement Dis Clin Practice 2(3):230. https://doi.org/10.1002/mdc3.12178

    Article  Google Scholar 

  7. Berkovic SF (2001) Progressive myoclonus epilepsies. Pediatric epilepsy diagnosis and therapy. Demos Medical Publishing, New York, pp 233–242

    Google Scholar 

  8. Stoka V, Turk V, Turk B (2016) Lysosomal cathepsins and their regulation in aging and. Biol Chem 274:19195–19203. https://doi.org/10.1016/j.arr.2016.04.010

    Article  CAS  Google Scholar 

  9. Bonne G, Rivier F, Hamroun D (2018) The 2019 version of the gene table of neuromuscular disorders (nuclear genome). Neuromuscul Disord 28(12):1031–1063. https://doi.org/10.1016/j.nmd.2018.09.006

    Article  PubMed  Google Scholar 

  10. Lerche H, Jurkat-Rott K, Lehmann-Horn F (2001) Ion channels and epilepsy. Am J Med Genet 106(2):146–159. https://doi.org/10.1002/ajmg.1582

    Article  CAS  PubMed  Google Scholar 

  11. Dyment D, Tetreault M, Beaulieu C, Hartley T, Ferreira P, Chardon JW, Marcadier J, Sawyer S, Mosca S, Innes AM (2015) Whole-exome sequencing broadens the phenotypic spectrum of rare pediatric epilepsy: a retrospective study. Clin Genet 88(1):34–40. https://doi.org/10.1111/cge.12464

    Article  CAS  PubMed  Google Scholar 

  12. Aryan H, Razmara E, Farhud D, Zarif-Yeganeh M, Zokaei S, Hassani SA, Ashrafi MR, Garshasbi M, Tavasoli AR (2020) Novel imaging and clinical phenotypes of CONDSIAS disorder caused by a homozygous frameshift variant of ADPRHL2: a case report. BMC Neurol 20(1):1–11. https://doi.org/10.1186/s12883-020-01873-3

    Article  CAS  Google Scholar 

  13. Sepahvand A, Razmara E, Bitarafan F, Galehdari M, Tavasoli AR, Almadani N, Garshasbi M A homozygote variant in the tRNA splicing endonuclease subunit 54 causes pontocerebellar hypoplasia in a consanguineous Iranian family. Molecular genetics & genomic medicine:e1413. https://doi.org/https://doi.org/10.1002/mgg3.1413

  14. Razmara E, Azimi H, Bitaraf A, Daneshmand MA, Galehdari M, Dokhanchi M, Esmaeilzadeh‐Gharehdaghi E, Garshasbi M Whole‐exome sequencing identified a novel variant in an Iranian patient affected by pycnodysostosis. Molecular genetics & genomic medicine:e1118. https://doi.org/https://doi.org/10.1002/mgg3.1118

  15. Razmara E, Azimi H, Tavasoli AR, Fallahi E, Sheida SV, Eidi M, Bitaraf A, Farjami Z, Daneshmand MA, Garshasbi M (2020) Novel neuroclinical findings of autosomal recessive primary microcephaly 15 in a consanguineous Iranian family. Eur J Med Genet 63(12):104096. https://doi.org/10.1016/j.ejmg.2020.104096

    Article  PubMed  Google Scholar 

  16. Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JA (2007) Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res 35 (suppl_2):W71-W74. https://doi.org/https://doi.org/10.1093/nar/gkm306

  17. Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y (2015) The I-TASSER Suite: protein structure and function prediction. Nat Methods 12(1):7–8. https://doi.org/10.1038/nmeth.3213

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Goddard TD, Huang CC, Ferrin TE (2007) Visualizing density maps with UCSF Chimera. J Struct Biol 157(1):281–287. https://doi.org/10.1016/j.jsb.2006.06.010

    Article  CAS  PubMed  Google Scholar 

  19. Capriotti E, Fariselli P, Casadio R (2005) I-Mutant2. 0: predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res 33 (suppl_2):W306-W310. https://doi.org/https://doi.org/10.1093/nar/gki375

  20. Bava KA, Gromiha MM, Uedaira H, Kitajima K, Sarai A (2004) ProTherm, version 4.0: thermodynamic database for proteins and mutants. Nucleic acids research 32 (suppl_1):D120-D121. https://doi.org/https://doi.org/10.1093/nar/gkh082

  21. Rodrigues CH, Pires DE, Ascher DB (2018) DynaMut: predicting the impact of mutations on protein conformation, flexibility and stability. Nucleic Acids Res 46(W1):W350–W355. https://doi.org/10.1093/nar/gky300

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Wiel L, Baakman C, Gilissen D, Veltman JA, Vriend G, Gilissen C (2019) MetaDome: Pathogenicity analysis of genetic variants through aggregation of homologous human protein domains. Hum Mutat 40(8):1030–1038. https://doi.org/10.1002/humu.23798

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Glaser F, Pupko T, Paz I, Bell RE, Bechor-Shental D, Martz E, Ben-Tal N (2003) ConSurf: identification of functional regions in proteins by surface-mapping of phylogenetic information. Bioinformatics 19(1):163–164. https://doi.org/10.1093/bioinformatics/19.1.163

    Article  CAS  PubMed  Google Scholar 

  24. Schwarz JM, Rödelsperger C, Schuelke M, Seelow D (2010) MutationTaster evaluates disease-causing potential of sequence alterations. Nat Methods 7(8):575. https://doi.org/10.1038/nmeth0810-575

    Article  CAS  PubMed  Google Scholar 

  25. Choi Y, Chan AP (2015) PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics 31(16):2745–2747. https://doi.org/10.1093/bioinformatics/btv195

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Adzhubei I, Jordan DM, Sunyaev SR (2013) Predicting functional effect of human missense mutations using PolyPhen‐2. Current protocols in human genetics 76 (1):7.20. 21–27.20. 41. https://doi.org/https://doi.org/10.1002/0471142905.hg0720s76

  27. Ferrer-Costa C, Gelpí JL, Zamakola L, Parraga I, De La Cruz X, Orozco M (2005) PMUT: a web-based tool for the annotation of pathological mutations on proteins. Bioinformatics 21(14):3176–3178. https://doi.org/10.1093/bioinformatics/bti486

    Article  CAS  PubMed  Google Scholar 

  28. Fattahi Z, Beheshtian M, Mohseni M, Poustchi H, Sellars E, Nezhadi SH, Amini A, Arzhangi S, Jalalvand K, Jamali P (2019) Iranome: a catalog of genomic variations in the Iranian population. Hum Mutat 40(11):1968–1984. https://doi.org/10.1002/humu.23880

    Article  CAS  PubMed  Google Scholar 

  29. Trabzuni D, Ryten M, Walker R, Smith C, Imran S, Ramasamy A, Weale ME, Hardy J (2011) Quality control parameters on a large dataset of regionally dissected human control brains for whole genome expression studies. J Neurochem 119(2):275–282. https://doi.org/10.1111/j.1471-4159.2011.07432.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Shen EH, Overly CC, Jones AR (2012) the allen human brain atlas: comprehensive gene expression mapping of the human brain. Trends Neurosci 35(12):711–714. https://doi.org/10.1016/j.tins.2012.09.005

    Article  CAS  PubMed  Google Scholar 

  31. Sherry ST, Ward M-H, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K (2001) dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 29(1):308–311. https://doi.org/10.1093/nar/29.1.308

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) 1000 Genome Project Data Processing Subgroup. 2009. The sequence alignment/map format and samtools. Bioinformatics 25 (16):2078-2079. https://doi.org/https://doi.org/10.1093/bioinformatics/btp352

  33. Auer PL, Johnsen JM, Johnson AD, Logsdon BA, Lange LA, Nalls MA, Zhang G, Franceschini N, Fox K, Lange EM (2012) Imputation of exome sequence variants into population-based samples and blood-cell-trait-associated loci in African Americans: NHLBI GO Exome Sequencing Project. Am J Hum Genet 91(5):794–808. https://doi.org/10.1016/j.ajhg.2012.08.031

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Karczewski K, Francioli L (2017) The Genome Aggregation Database (gnomAD). MacArthur Lab

  35. Karczewski KJ, Weisburd B, Thomas B, Solomonson M, Ruderfer DM, Kavanagh D, Hamamsy T, Lek M, Samocha KE, Cummings BB (2017) The ExAC browser: displaying reference data information from over 60,000 exomes. Nucleic Acids Res 45(D1):840–845. https://doi.org/10.1093/nar/gkw971

    Article  CAS  Google Scholar 

  36. Landrum MJ, Lee JM, Benson M, Brown G, Chao C, Chitipiralla S, Gu B, Hart J, Hoffman D, Hoover J (2016) ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res 44(D1):862–868. https://doi.org/10.1093/nar/gkv1222

    Article  CAS  Google Scholar 

  37. Tu R, Stupp G, Su A (2020) SuLab/Wikidata-phenomizer: Release v1. 0 on 2020-01-15. Zenodo (2020).

  38. Mishima H, Suzuki H, Doi M, Miyazaki M, Watanabe S, Matsumoto T, Morifuji K, Moriuchi H, Yoshiura K-i, Kondoh T (2019) Evaluation of Face2Gene using facial images of patients with congenital dysmorphic syndromes recruited in Japan. J Hum Genet 64 (8):789–794. https://doi.org/https://doi.org/10.1038/s10038-019-0619-z

  39. Stenson PD, Ball EV, Mort M, Phillips AD, Shiel JA, Thomas NS, Abeysinghe S, Krawczak M, Cooper DN (2003) Human gene mutation database (HGMD®): 2003 update. Hum Mutat 21(6):577–581. https://doi.org/10.1002/humu.10212

    Article  CAS  PubMed  Google Scholar 

  40. Fokkema IF, Taschner PE, Schaafsma GC, Celli J, Laros JF, den Dunnen JT (2011) LOVD v. 2.0: the next generation in gene variant databases. Hum Mutat 32 (5):557–563. https://doi.org/https://doi.org/10.1002/humu.21438

  41. Biesecker LG, Harrison SM (2018) The ACMG/AMP reputable source criteria for the interpretation of sequence variants. Genet Med 20(12):1687. https://doi.org/10.1038/gim.2018.42

    Article  PubMed Central  PubMed  Google Scholar 

  42. Butin-Israeli V, Adam SA, Goldman AE, Goldman RD (2012) Nuclear lamin functions and disease. Trends Genet 28(9):464–471. https://doi.org/10.1016/j.tig.2012.06.001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Ruan J, Xu C, Bian C, Lam R, Wang J-P, Kania J, Min J, Zang J (2012) Crystal structures of the coil 2B fragment and the globular tail domain of human lamin B1. FEBS Lett 586(4):314–318. https://doi.org/10.1016/j.febslet.2012.01.007

    Article  CAS  PubMed  Google Scholar 

  44. Worman HJ (2012) Nuclear lamins and laminopathies. J Pathol 226(2):316–325. https://doi.org/10.1002/path.2999

    Article  CAS  PubMed  Google Scholar 

  45. Stalmans G, Lilina AV, Vermeire P-J, Fiala J, Novák P, Strelkov SV (2020) Addressing the molecular mechanism of longitudinal lamin assembly using chimeric fusions. Cells 9(7):1633. https://doi.org/10.3390/cells9071633

    Article  CAS  PubMed Central  Google Scholar 

  46. Kim Y, Sharov AA, McDole K, Cheng M, Hao H, Fan C-M, Gaiano N, Ko MS, Zheng Y (2011) Mouse B-type lamins are required for proper organogenesis but not by embryonic stem cells. Science 334(6063):1706–1710. https://doi.org/10.1126/science.1211222

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Yoon BC, Jung H, Dwivedy A, O’Hare CM, Zivraj KH, Holt CE (2012) Local translation of extranuclear lamin B promotes axon maintenance. Cell 148(4):752–764. https://doi.org/10.1016/j.cell.2011.11.064

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Vergnes L, Péterfy M, Bergo MO, Young SG, Reue K (2004) Lamin B1 is required for mouse development and nuclear integrity. Proc Natl Acad Sci 101(28):10428–10433. https://doi.org/10.1073/pnas.0401424101

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Damiano JA, Afawi Z, Bahlo M, Mauermann M, Misk A, Arsov T, Oliver KL, Dahl H-HM, Shearer AE, Smith RJ (2015) Mutation of the nuclear lamin gene LMNB2 in progressive myoclonus epilepsy with early ataxia. Hum Mol Genet 24(16):4483–4490. https://doi.org/10.1093/hmg/ddv171

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Coffinier C, Chang SY, Nobumori C, Tu Y, Farber EA, Toth JI, Fong LG, Young SG (2010) Abnormal development of the cerebral cortex and cerebellum in the setting of lamin B2 deficiency. Proc Natl Acad Sci 107(11):5076–5081. https://doi.org/10.1073/pnas.0908790107

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the family for their willing participation and cooperation with us and also are thankful to the staff of DeNA Laboratory, Tehran, Iran, for their assistance.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: MG, MKH, and FS. Conducted the experiments: MKH and FS. Analyzed and interpreted the data: ER, FR, EF, and ART. Contributed reagents/materials/analysis tools: MG and FS. Wrote the paper: ER. Depicted the figures: ER. Funding acquisition: MG. Project administration: MG. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Masoud Garshasbi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

This study was approved by the ethics committee of Tarbiat Modares University, Tehran, Iran and has, therefore, been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Consent to participate

Written informed consent was obtained from each participant before starting the experiment.

Consent for publication

Patients signed informed consent regarding publishing their data and photographs.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 2381 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soleimanipour, F., Razmara, E., Rahbarizadeh, F. et al. A novel missense variant in the LMNB2 gene causes progressive myoclonus epilepsy. Acta Neurol Belg 122, 659–667 (2022). https://doi.org/10.1007/s13760-021-01650-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13760-021-01650-0

Keywords

Navigation