Skip to main content
Log in

MicroRNA‐144 promotes remote limb ischemic preconditioning-mediated neuroprotection against ischemic stroke via PTEN/Akt pathway

  • Original article
  • Published:
Acta Neurologica Belgica Aims and scope Submit manuscript

Abstract

Ischemic stroke is a refractory disease generally caused by cerebral ischemic injury. Remote ischemic preconditioning (RIPC) caused by transient ischemia and reperfusion of the femoral artery exerts a protective effect on ischemic stroke-induced brain injury. This study was designed to investigate the potential molecular mechanism of RIPC-mediated neuroprotection, namely, the biological effects of microRNA-144 on RIPC in mice with ischemic stroke and its effects on PTEN and Akt signaling pathways. Healthy adult C57BL6 mice were selected for the establishment of middle cerebral artery occlusion (MCAO). One hour before the start, remote ischemic preconditioning of limbs was performed in mice. Brain edema and infarct volume were measured. The expressions of microRNA-144, PTEN, and Akt were measured. The results showed that, compared with MCAO group, the RIPC group protected mice from cerebral ischemia–reperfusion injury, systemic accumulation of inflammatory cytokines, and accelerated apoptosis of parenchymal cells. In RIPC group, PTEN expression decreased, and mir-144 and Akt expression increased. The level of phosphorylated PTEN in the transfected microRNA-144 inhibitor group increased and the level of phosphorylated Akt reduced significantly. In conclusion, our results suggest that microRNA-144 may play a protective role in remote ischemic pretreatment by downregulating PTEN and upregulating Akt, suggesting that microRNA-144 via PTEN/Akt pathway may be of therapeutic significance in ischemic stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liao S et al (2017) Endothelial progenitor cells for ischemic stroke: update on basic research and application. Stem cells Int 2017:2193432

    PubMed  PubMed Central  Google Scholar 

  2. Zhang L et al (2017) Neural differentiation of human Wharton's jelly-derived mesenchymal stem cells improves the recovery of neurological function after transplantation in ischemic stroke rats. Neural Regen Res 12(7):1103–1110

    PubMed  PubMed Central  Google Scholar 

  3. Lim SY, Yellon DM, Hausenloy DJ (2010) The neural and humoral pathways in remote limb ischemic preconditioning. Basic Res Cardiol 105(5):651–655

    PubMed  Google Scholar 

  4. K C et al (2017) Irisin protects mitochondria function during pulmonary ischemia/reperfusion injury. Sci Transl med 9(418): eaao6298

    Google Scholar 

  5. Oberkofler CE et al (2015) Systemic protection through remote ischemic preconditioning is spread by platelet-dependent signaling in mice. Hepatology 60(4):1409–1417

    Google Scholar 

  6. Jiang Q et al (2019) Remote ischaemic preconditioning ameliorates sinus rhythm restoration rate through Cox maze radiofrequency procedure associated with inflammation reaction reduction. Basic Res Cardiol 114(3):14

    PubMed  Google Scholar 

  7. Ma LL et al (2017) Hypercholesterolemia abrogates remote ischemic preconditioning-induced cardioprotection: role of reperfusion injury salvage kinase signals. Shock (Augusta, Ga.) 47(3):363–369

    CAS  Google Scholar 

  8. Breivik L et al (2011) Remote postconditioning by humoral factors in effluent from ischemic preconditioned rat hearts is mediated via PI3K/Akt-dependent cell-survival signaling at reperfusion. Basic Res Cardiol 106(1):135–145

    CAS  PubMed  Google Scholar 

  9. Li Q et al (2019) Circular RNA MAT2B promotes glycolysis and malignancy of hepatocellular carcinoma via the miR‐338‐3p/PKM2 axis under hypoxic stress. Hepatology 70(4):1298-1316

    CAS  PubMed  Google Scholar 

  10. Su M et al (2019) Circular RNAs in cancer: emerging functions in hallmarks, stemness, resistance and roles as potential biomarkers. Mol cancer 18(1):90

    PubMed  PubMed Central  Google Scholar 

  11. Valadi H et al (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature cell Biol 9(6):654–659

    CAS  PubMed  Google Scholar 

  12. Ueno K et al (2016) Increased plasma VEGF levels following ischemic preconditioning are associated with downregulation of miRNA-762 and miR-3072–5p. Sci Rep 6:36758

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Slagsvold KH et al (2014) Remote ischemic preconditioning preserves mitochondrial function and influences myocardial microRNA expression in atrial myocardium during coronary bypass surgery. Circ Res 114(5):851–859

    CAS  PubMed  Google Scholar 

  14. Yamaguchi T et al (2015) Repeated remote ischemic conditioning attenuates left ventricular remodeling via exosome-mediated intercellular communication on chronic heart failure after myocardial infarction. Int J Cardiol 178:239–246

    PubMed  Google Scholar 

  15. Li J et al (2014) MicroRNA-144 is a circulating effector of remote ischemic preconditioning. Basic Res Cardiol 109(5):423

    PubMed  Google Scholar 

  16. Nagoshi T et al (2005) PI3K rescues the detrimental effects of chronic Akt activation in the heart during ischemia/reperfusion injury. J Clin Invest 115(8):2128–2138

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Gill R et al (2015) Remote ischemic preconditioning for myocardial protection: update on mechanisms and clinical relevance. Mol Cell Biochem 402:41–49

    CAS  PubMed  Google Scholar 

  18. Carloni S et al (2010) Activation of autophagy and Akt/CREB signaling play an equivalent role in the neuroprotective effect of rapamycin in neonatal hypoxia-ischemia. Autophagy 6(3):366–377

    CAS  PubMed  Google Scholar 

  19. Li X et al (2017) Activation of autophagy contributes to sevoflurane-induced neurotoxicity in fetal rats. Front Mol Neurosci 10:432

    PubMed  PubMed Central  Google Scholar 

  20. Hu S et al (2012) Noninvasive limb remote ischemic preconditioning contributes neuroprotective effects via activation of adenosine A1 receptor and redox status after transient focal cerebral ischemia in rats. Brain Res 1459:81–90

    CAS  PubMed  Google Scholar 

  21. Sugg RM et al (2006) Intra-arterial reteplase compared to urokinase for thrombolytic recanalization in acute ischemic stroke. AJNR Am J Neuroradiol 27(4):769–773

    CAS  PubMed  Google Scholar 

  22. Bhuiyan MI et al (2011) Major role of the PI3K/Akt pathway in ischemic tolerance induced by sublethal oxygen-glucose deprivation in cortical neurons in vitro. Arch Pharm Res 34(6):1023–1034

    CAS  PubMed  Google Scholar 

  23. Katare RG et al (2009) Chronic intermittent fasting improves the survival following large myocardial ischemia by activation of BDNF/VEGF/PI3K signaling pathway. J Mol Cell Cardiol 46(3):405–412

    CAS  PubMed  Google Scholar 

  24. Rahman S et al (2011) Phosphorylation of GSK-3β mediates intralipid-induced cardioprotection against ischemia/reperfusion injury. Anesthesiology 115(2):242–253

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Peng C et al (2018) A preventive injection of endothelial progenitor cells prolongs lifespan in stroke-prone spontaneously hypertensive rats. Clin Sci (London, England: 1979) 132(16):1797–1810

    CAS  Google Scholar 

  26. Hoffmann CJ et al (2015) Vascular signal transducer and activator of transcription-3 promotes angiogenesis and neuroplasticity long-term after stroke. Circulation 131(20):1772–1782

    CAS  PubMed  Google Scholar 

  27. Chen C et al (2018) Splenic responses play an important role in remote ischemic preconditioning-mediated neuroprotection against stroke. J Neuroinflammation 15(1):167

    PubMed  PubMed Central  Google Scholar 

  28. Catanzaro G et al (2018) The miR-139–5p regulates proliferation of supratentorial paediatric low-grade gliomas by targeting the PI3K/AKT/mTORC1 signalling. Neuropathol Appl Neurobiol 44(7):687–706

    CAS  PubMed  Google Scholar 

  29. Xue G et al (2012) Akt/PKB-mediated phosphorylation of Twist1 promotes tumor metastasis via mediating cross-talk between PI3K/Akt and TGF-β signaling axes. Cancer Discov 2(3):248–259

    CAS  PubMed  Google Scholar 

  30. Perry JM et al (2011) Cooperation between both Wnt/{beta}-catenin and PTEN/PI3K/Akt signaling promotes primitive hematopoietic stem cell self-renewal and expansion. Genes Dev 25(18):1928–1942

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Manning BD, Toker A (2017) AKT/PKB signaling: navigating the network. Cell 169(3):381–405

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang H et al (2008) MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res 68(2):425–433

    CAS  PubMed  Google Scholar 

  33. McCubrey JA et al (2007) Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochem Biophys Acta 1773(8):1263–1284

    CAS  PubMed  Google Scholar 

  34. Chappell WH et al (2011) Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR inhibitors: rationale and importance to inhibiting these pathways in human health. Oncotarget 2(3):135–164

    PubMed  PubMed Central  Google Scholar 

  35. Dubrovska A et al (2009) The role of PTEN/Akt/PI3K signaling in the maintenance and viability of prostate cancer stem-like cell populations. Proc Natl Acad Sci U S A 106(1):268–273

    CAS  PubMed  Google Scholar 

  36. Liu SL et al (2018) Quantitative lipid imaging reveals a new signaling function of phosphatidylinositol-3,4-bisphophate: isoform- and site-specific activation of akt. Mol cell 71(6):1092–1104.e5

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Rehni AK, Singh N (2007) Role of phosphoinositide 3-kinase in ischemic postconditioning-induced attenuation of cerebral ischemia-evoked behavioral deficits in mice. Pharmacol Rep 59(2):192–198

    CAS  PubMed  Google Scholar 

  38. Minghua W et al (2018) Plasma exosomes induced by remote ischaemic preconditioning attenuate myocardial ischaemia/reperfusion injury by transferring miR-24. Cell Death Dis 9(3):320

    PubMed  PubMed Central  Google Scholar 

  39. Fu YF et al (2009) Mir-144 selectively regulates embryonic alpha-hemoglobin synthesis during primitive erythropoiesis. Blood 113(6):1340–1349

    CAS  PubMed  Google Scholar 

  40. Kim JK et al (2017) MIR144* inhibits antimicrobial responses against Mycobacterium tuberculosis in human monocytes and macrophages by targeting the autophagy protein DRAM2. Autophagy 13(2):423–441

    CAS  PubMed  Google Scholar 

  41. Zhao Y et al (2017) MiR-144–3p inhibits cell proliferation and induces apoptosis in multiple myeloma by targeting c-Met. Am J Transl Res 9(5):2437–2446

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Mao LL et al (2015) Neuroprotective effects of bisperoxovanadium on cerebral ischemia by inflammation inhibition. Neurosci Lett 602:120–125

    CAS  PubMed  Google Scholar 

  43. Zhao J et al (2013) PTEN inhibition prevents rat cortical neuron injury after hypoxia-ischemia. Neuroscience 238:242–251

    CAS  PubMed  Google Scholar 

  44. Grande V, Manassero G, Vercelli A (2014) Neuroprotective and anti-inflammatory roles of the phosphatase and tensin homolog deleted on chromosome ten (PTEN) inhibition in a mouse model of temporal lobe epilepsy. PLoS ONE 9(12):e114554

    PubMed  PubMed Central  Google Scholar 

  45. Sidall HK et al (2008) Ischemia-reperfusion injury and cardioprotection: investigating PTEN, the phosphatase that negatively regulates PI3K, using a congenital model of PTEN haploinsufficiency. Basic Res Cardiol 103(6):560–568

    Google Scholar 

  46. Cai Z, Semenza GL (2005) PTEN activity is modulated during ischemia and reperfusion: involvement in the induction and decay of preconditioning. Circ Res 97(12):1351–1359

    CAS  PubMed  Google Scholar 

  47. Hong J et al (2019) Pharmacological inhibition of PTEN restores remote ischemic postconditioning cardioprotection in hypercholesterolemic mice: potential role of PTEN/AKT/GSK3β SIGNALS. Shock (Augusta, Ga.) 52(5):522–531

    CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Jiangsu Students’ Platform for innovation and entrepreneurship training program (201810313035Y), National Demonstration Center for Experimental Basic Medical Science Education (Xuzhou Medical University).

Author information

Authors and Affiliations

Authors

Contributions

SJZ, MMC and YTG contributed to the conception and design of the study. XYC analyzed the data. BC and XRW and BC drafted the manuscript and figures. Final approval of the version to be published: All authors.

Corresponding authors

Correspondence to Bin Chen or Xian-Ru Wen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The experimental procedures were strictly carried out in accordance with the Care and Use of Laboratory Animals Guide from the Ministry of Public Health of China, and approved by the medical ethics committee of Xuzhou Medical University.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, SJ., Cui, MM., Gao, YT. et al. MicroRNA‐144 promotes remote limb ischemic preconditioning-mediated neuroprotection against ischemic stroke via PTEN/Akt pathway. Acta Neurol Belg 121, 95–106 (2021). https://doi.org/10.1007/s13760-020-01500-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13760-020-01500-5

Keywords

Navigation