Cytochrome P450-mediated estrogen catabolism therapeutic avenues in epilepsy

Abstract

Epilepsy is a neuropsychiatric disorder, which does not have any identifiable cause. However, experimental and clinical results have asserted that the sex hormone estrogen level and endocrine system function influence the seizure and epileptic episodes. There are available drugs to control epilepsy, which passes through the metabolism process. Cytochrome P-450 family 1 (CYP1A1) is a heme-containing mono-oxygenase that are induced several folds in most of the tissues and cells contributing to their differential expression, which regulates various metabolic processes upon administration of therapeutics. CYP1A1 gene family has been found to metabolize estrogen, a female sex hormone, which plays a central role in maintaining the health of brain altering the level of estrogen active neuropsychiatric disorder like epilepsy. Hence, in this article, we endeavor to provide an opinion of estrogen, its effects on epilepsy and catamenial epilepsy, their metabolism by CYP1A1 and new way forward to differential diagnosis and clinical management of epilepsy in future.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Thijs RD, Surges R, O'Brien TJ, Sander JW (2019) Epilepsy in adults. Lancet 393(10172):689–701. https://doi.org/10.1016/s0140-6736(18)32596-0

    Article  PubMed  Google Scholar 

  2. 2.

    Lossius MI, Tauboll E, Mowinckel P, Morkrid L, Gjerstad L (2007) Reversible effects of antiepileptic drugs on reproductive endocrine function in men and women with epilepsy—a prospective randomized double-blind withdrawal study. Epilepsia 48(10):1875–1882. https://doi.org/10.1111/j.1528-1167.2007.01147.x

    Article  PubMed  Google Scholar 

  3. 3.

    Reddy DS, Rogawski MA (2009) Neurosteroid replacement therapy for catamenial epilepsy. Neurotherapeutics 6(2):392–401

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Reddy DS (2013) Neuroendocrine aspects of catamenial epilepsy. Horm Behav 63(2):254–266

    CAS  PubMed  Google Scholar 

  5. 5.

    Veliskova J, De Jesus G, Kaur R, Velisek L (2010) Females, their estrogens, and seizures. Epilepsia 51(Suppl 3):141–144. https://doi.org/10.1111/j.1528-1167.2010.02629.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Isojarvi JI, Tauboll E, Herzog AG (2005) Effect of antiepileptic drugs on reproductive endocrine function in individuals with epilepsy. CNS Drugs 19(3):207–223. https://doi.org/10.2165/00023210-200519030-00003

    Article  PubMed  Google Scholar 

  7. 7.

    Reddy DS (2004) Role of neurosteroids in catamenial epilepsy. Epilepsy Res 62(2–3):99–118. https://doi.org/10.1016/j.eplepsyres.2004.09.003

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Velíšková J, De Jesus G, Kaur R, Velíšek L (2010) Females, their estrogens, and seizures. Epilepsia 51:141–144

    PubMed  PubMed Central  Google Scholar 

  9. 9.

    Siesjö BK (1978) Brain energy metabolism. Wiley, New York

    Google Scholar 

  10. 10.

    Bachmann K (2009) Drug–drug interactions with an emphasis on drug metabolism and transport. In: Pharmacology. Elsevier, Amsterdam, pp 303–325

    Google Scholar 

  11. 11.

    Schmucker DL (2001) Liver function and phase I drug metabolism in the elderly. Drugs Aging 18(11):837–851

    CAS  PubMed  Google Scholar 

  12. 12.

    Bachmann K (2009) Drug metabolism. In: Pharmacology. Elsevier, Amsterdam, pp 131–173

    Google Scholar 

  13. 13.

    Liu D, Qin S, Ray B, Kalari K, Wang L (2018) Weinshilboum R (2019) Correction: Single nucleotide polymorphisms (snps) distant from xenobiotic response elements can modulate aryl hydrocarbon receptor function: snp-dependent cyp1a1 induction. Drug Metab Disposit 46(9):1372–1381

    CAS  Google Scholar 

  14. 14.

    Parween S, Velazquez MNR, Udhane SS, Kagawa N, Pandey AV (2019) Loss of multiple enzyme activities due to the human genetic variation P284T in NADPH cytochrome P450 oxidoreductase. bioRxiv:643825

  15. 15.

    Tracy TS, Chaudhry AS, Prasad B, Thummel KE, Schuetz EG, Zhong X-b, Tien Y-C, Jeong H, Pan X, Shireman LM (2016) Interindividual variability in cytochrome P450–mediated drug metabolism. Drug Metab Dispos 44(3):343–351

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Xie F, Ding X, Zhang Q-Y (2016) An update on the role of intestinal cytochrome P450 enzymes in drug disposition. Acta Pharmaceutica Sinica B 6(5):374–383

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    Martinez SE, Pandey AV, Court MH (2019) Isoform-dependent effects of cytochrome P450 oxidoreductase polymorphisms on drug metabolism by cytochrome P450 enzymes in dogs. FASEB J 33(1_supplement):506.509

    Google Scholar 

  18. 18.

    Stanley L (2017) Drug metabolism. In: Pharmacognosy. Elsevier, Amsterdam, pp 527–545

    Google Scholar 

  19. 19.

    Jacenik D, Cygankiewicz AI, Mokrowiecka A, Malecka-Panas E, Fichna J, Krajewska WM (2019) Sex- and age-related estrogen signaling alteration in inflammatory bowel diseases: modulatory role of estrogen receptors. Int J Mol Sci. https://doi.org/10.3390/ijms20133175

    Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Artymuk N, Zotova O, Gulyaeva L (2019) Adenomyosis: genetics of estrogen metabolism. Horm Mol Biol Clin Invest. https://doi.org/10.1515/hmbci-2018-0069

    Article  Google Scholar 

  21. 21.

    Kiyama R, Wada-Kiyama Y (2015) Estrogenic endocrine disruptors: Molecular mechanisms of action. Environ Int 83:11–40. https://doi.org/10.1016/j.envint.2015.05.012

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Saad M, Cavanaugh K, Verbueken E, Pype C, Casteleyn C, Van Ginneken C, Van Cruchten S (2016) Xenobiotic metabolism in the zebrafish: a review of the spatiotemporal distribution, modulation and activity of Cytochrome P450 families 1 to 3. J Toxicol Sci 41(1):1–11

    CAS  PubMed  Google Scholar 

  23. 23.

    Dong L, Wang W, Wang F, Stoner M, Reed JC, Harigai M, Samudio I, Kladde MP, Vyhlidal C, Safe S (1999) Mechanisms of transcriptional activation of bcl-2gene expression by 17β-estradiol in breast cancer cells. J Biol Chem 274(45):32099–32107

    CAS  PubMed  Google Scholar 

  24. 24.

    Szulc P, Munoz F, Claustrat B, Garnero P, Marchand F, Duboeuf F, Delmas P (2001) Bioavailable estradiol may be an important determinant of osteoporosis in men: the MINOS study. J Clin Endocrinol Metab 86(1):192–199

    CAS  PubMed  Google Scholar 

  25. 25.

    Collins P, Rosano GM, Sarrel PM, Ulrich L, Adamopoulos S, Beale CM, McNeill JG, Poole-Wilson PA (1995) 17β-Estradiol attenuates acetylcholine-induced coronary arterial constriction in women but not men with coronary heart disease. Circulation 92(1):24–30

    CAS  PubMed  Google Scholar 

  26. 26.

    Garcia-Segura LM, Azcoitia I, DonCarlos LL (2001) Neuroprotection by estradiol. Prog Neurobiol 63(1):29–60. https://doi.org/10.1016/s0301-0082(00)00025-3

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Geary N (1998) The effect of estrogen on appetite. Medscape Women's Health 3(6):3–3

    CAS  PubMed  Google Scholar 

  28. 28.

    Tarnopolsky MA (2008) Sex differences in exercise metabolism and the role of 17-beta estradiol. Med Sci Sports Exerc 40(4):648–654

    CAS  PubMed  Google Scholar 

  29. 29.

    Giraud SN, Caron CM, Pham-Dinh D, Kitabgi P, Nicot AB (2010) Estradiol inhibits ongoing autoimmune neuroinflammation and NFκB-dependent CCL2 expression in reactive astrocytes. Proc Natl Acad Sci 107(18):8416–8421

    CAS  PubMed  Google Scholar 

  30. 30.

    Giudice A, Barbieri A, Bimonte S, Cascella M, Cuomo A, Crispo A, D’arena G, Galdiero M, Della Pepa ME, Botti G (2019) Dissecting the prevention of estrogen-dependent breast carcinogenesis through Nrf2-dependent and independent mechanisms. OncoTargets Ther 12:4937

    CAS  Google Scholar 

  31. 31.

    Szafran H, Smielak-Korombel W (1998) The role of estrogens in hormonal regulation of lipid metabolism in women. Przegl Lek 55(5):266–270

    CAS  PubMed  Google Scholar 

  32. 32.

    Martucci CP, Fishman J (1993) P450 enzymes of estrogen metabolism. Pharmacol Ther 57(2–3):237–257

    CAS  PubMed  Google Scholar 

  33. 33.

    Yazawa T, Imamichi Y, Sekiguchi T, Miyamoto K, Uwada J, Khan MRI, Suzuki N, Umezawa A, Taniguchi T (2019) Transcriptional regulation of ovarian steroidogenic genes: recent findings obtained from stem cell-derived steroidogenic cells. Biomed Res Int 2019:8973076. https://doi.org/10.1155/2019/8973076

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Coleman MD (2019) Human drug metabolism. Wiley, Hoboken

    Google Scholar 

  35. 35.

    Lonning PE, Dowsett M, Powles TJ (1990) Postmenopausal estrogen synthesis and metabolism: alterations caused by aromatase inhibitors used for the treatment of breast cancer. J Steroid Biochem 35(3–4):355–366. https://doi.org/10.1016/0022-4731(90)90241-j

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Ping M, Ding-jun Q, Xin-rong M (2011) Cytochrome P450 and iatrology. Chin J Antibiotics 2:4

    Google Scholar 

  37. 37.

    Ruszkowska M, Sadowska A, Nynca A, Orlowska K, Swigonska S, Molcan T, Paukszto L, Jastrzebski JP, Ciereszko RE (2020) The effects of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) on the transcriptome of aryl hydrocarbon receptor (AhR) knock-down porcine granulosa cells. PeerJ 8:e8371

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Mortazavi Y, Rahimi R, Azimi F, Rostami S, Moghimi M, Faghihzadeh S, Mazloomzadeh S (2020) Role of Glutathione S-transferase (GSTM1, GSTT1) and CYP1A1 (cytochrome p450) Gene polymorphisms in susceptibility to acute myeloid leukemia. Middle East J Cancer 11(1):12–20

    CAS  Google Scholar 

  39. 39.

    Golmohammadzadeh G, Mohammadpour A, Ahangar N, Shokrzadeh M (2019) Polymorphisms in Phase I (CYP450) Genes CYP1A1 (rs4646421), CYP1B1 (rs1056836), CYP19A1 (rs749292) and CYP2C8 (rs1058930) and their relation to risk of breast cancer: a case-control study in Mazandaran Province in North of Iran. Open Access Macedonian J Med Sci 7(15):2488

    Google Scholar 

  40. 40.

    Ye W, Chen R, Chen X, Huang B, Lin R, Xie X, Chen J, Jiang J, Deng Y, Wen J (2019) AhR regulates the expression of human cytochrome P450 1A1 (CYP1A1) by recruiting Sp1. FEBS J 286(21):4215–4231

    CAS  PubMed  Google Scholar 

  41. 41.

    Zamani M, Levy W, Desmond N (2004) Estradiol increases delayed, N-methyl-d-aspartate receptor-mediated excitation in the hippocampal CA1 region. Neuroscience 129(1):243–254

    CAS  PubMed  Google Scholar 

  42. 42.

    Omiecinski CJ, Remmel RP, Hosagrahara VP (1999) Concise review of the cytochrome P450s and their roles in toxicology. Toxicol Sci 48(2):151–156

    CAS  PubMed  Google Scholar 

  43. 43.

    Urichuk L, Prior TI, Dursun S, Baker G (2008) Metabolism of atypical antipsychotics: involvement of cytochrome p450 enzymes and relevance for drug-drug interactions. Curr Drug Metab 9(5):410–418

    CAS  PubMed  Google Scholar 

  44. 44.

    WaaA D, Syrek M, Rylko Z, Wójcikowski J (2001) Effects of antidepressant drugs on the activity of cytochrome P-450 measured by caffeine oxidation in rat liver microsomes. Pol J Pharmacol 53(4):351–358

    Google Scholar 

  45. 45.

    Matsumoto K, Nemoto E, Hasegawa T, Akimoto M, Sugibayashi K (2011) In vitro characterization of the cytochrome P450 isoforms involved in the metabolism of 6-methoxy-2-napthylacetic acid, an active metabolite of the prodrug nabumetone. Biol Pharmaceutical Bull 34(5):734–739

    CAS  Google Scholar 

  46. 46.

    Wójtowicz T, Lebida K, Mozrzymas JW (2008) 17β-estradiol affects GABAergic transmission in developing hippocampus. Brain Res 1241:7–17

    PubMed  Google Scholar 

  47. 47.

    Kimura I, Nakayama Y, Yamauchi H, Konishi M, Miyake A, Mori M, Ohta M, Itoh N, Fujimoto M (2008) Neurotrophic activity of neudesin, a novel extracellular heme-binding protein, is dependent on the binding of heme to its cytochrome b5-like heme/steroid-binding domain. J Biol Chem 283(7):4323–4331

    CAS  PubMed  Google Scholar 

  48. 48.

    Figueiredo RT, Fernandez PL, Mourao-Sa DS, Porto BN, Dutra FF, Alves LS, Oliveira MF, Oliveira PL, Graça-Souza AV, Bozza MT (2007) Characterization of heme as activator of Toll-like receptor 4. J Biol Chem 282(28):20221–20229

    CAS  PubMed  Google Scholar 

  49. 49.

    Zhu Y, Hon T, Ye W, Zhang L (2002) Heme deficiency interferes with the Ras-mitogen-activated protein kinase signaling pathway and expression of a subset of neuronal genes. Cell Growth Differ 13(9):431–439

    CAS  PubMed  Google Scholar 

  50. 50.

    Mense SM, Zhang L (2006) Heme: a versatile signaling molecule controlling the activities of diverse regulators ranging from transcription factors to MAP kinases. Cell Res 16(8):681–692

    CAS  PubMed  Google Scholar 

  51. 51.

    Padmanaban G, Venkateswar V, Rangarajan P (1989) Haem as a multifunctional regulator. Trends Biochem Sci 14(12):492–496

    CAS  PubMed  Google Scholar 

  52. 52.

    Furuyama K, Kaneko K (2007) Heme as a magnificent molecule with multiple missions: heme determines its own fate and governs cellular homeostasis. Tohoku J Exp Med 213(1):1–16

    CAS  PubMed  Google Scholar 

  53. 53.

    Ortiz de Montellano PR (2009) Wiley encyclopedia of chemical biology. Wiley, Hemes in Biology, pp 240–249

  54. 54.

    Almira Correia M, Sinclair PR, De Matteis F (2011) Cytochrome P450 regulation: the interplay between its heme and apoprotein moieties in synthesis, assembly, repair, and disposal. Drug Metab Rev 43(1):1–26

    Google Scholar 

  55. 55.

    Miksys SL, Tyndale RF (2002) Drug-metabolizing cytochrome P450s in the brain. J Psychiatry Neurosci 27(6):406

    PubMed  PubMed Central  Google Scholar 

  56. 56.

    Volk B, Hettmannsperger U, Papp T, Amelizad Z, Oesch F, Knoth R (1991) Mapping of phenytoin-inducible cytochrome P450 immunoreactivity in the mouse central nervous system. Neuroscience 42(1):215–235

    CAS  PubMed  Google Scholar 

  57. 57.

    Miksys S, Rao Y, Sellers E, Kwan M, Mendis D, Tyndale R (2000) Regional and cellular distribution of CYP2D subfamily members in rat brain. Xenobiotica 30(6):547–564

    CAS  PubMed  Google Scholar 

  58. 58.

    Ghersi-Egea J, Leninger-Muller B, Suleman G, Siest G, Minn A (1994) Localization of drug-metabolizing enzyme activities to blood-brain interfaces and circumventricular organs. J Neurochem 62(3):1089–1096

    CAS  PubMed  Google Scholar 

  59. 59.

    Dey A, Jones JE, Nebert DW (1999) Tissue-and cell type-specific expression of cytochrome P450 1A1 and cytochrome P450 1A2 mRNA in the mouse localized in situ hybridization. Biochem Pharmacol 58(3):525–537

    CAS  PubMed  Google Scholar 

  60. 60.

    Ghersi-Egea J-F, Leininger-Muller B, Cecchelli R, Fenstermacher J (1995) Blood-brain interfaces: relevance to cerebral drug metabolism. Toxicol Lett 82:645–653

    PubMed  Google Scholar 

  61. 61.

    Huang P, Rannug A, Ahlbom E, Håkansson H, Ceccatelli S (2000) Effect of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin on the expression of cytochrome P450 1A1, the aryl hydrocarbon receptor, and the aryl hydrocarbon receptor nuclear translocator in rat brain and pituitary. Toxicol Appl Pharmacol 169(2):159–167

    CAS  PubMed  Google Scholar 

  62. 62.

    Morse DC, Stein AP, Thomas PE, Lowndes HE (1998) Distribution and induction of cytochrome P450 1A1 and 1A2 in rat brain. Toxicol Appl Pharmacol 152(1):232–239

    CAS  PubMed  Google Scholar 

  63. 63.

    Farin FM, Omiecinski CJ (1993) Regiospecific expression of cytochrome P-450s and microsomal epoxide hydrolase in human brain tissue. J Toxicol Environ Health Part A 40(2–3):317–335

    CAS  Google Scholar 

  64. 64.

    Riedl AG, Watts PM, Edwards RJ, Boobis AR, Jenner P, Marsden CD (1996) Selective localisation of P450 enzymes and NADPH-P450 oxidoreductase in rat basal ganglia using anti-peptide antisera. Brain Res 743(1–2):324–328

    CAS  PubMed  Google Scholar 

  65. 65.

    Schilter BT, Omiecinski CJ (1993) Regional distribution and expression modulation of cytochrome P-450 and epoxide hydrolase mRNAs in the rat brain. Mol Pharmacol 44(5):990–996

    CAS  PubMed  Google Scholar 

  66. 66.

    Agúndez JA, Gallardo L, Martínez C, Gervasini G, Benítez J (1998) Modulation of CYP1A2 enzyme activity by indoleamines: inhibition by serotonin and tryptamine. Pharmacogenetics 8(3):251–258

    PubMed  Google Scholar 

  67. 67.

    McFadyen MC, Melvin WT, Murray GI (1998) Regional distribution of individual forms of cytochrome P450 mRNA in normal adult human brain. Biochem Pharmacol 55(6):825–830

    CAS  PubMed  Google Scholar 

  68. 68.

    Murray GI, Taylor MC, McFadyen MC, McKay JA, Greenlee WF, Burke MD, Melvin WT (1997) Tumor-specific expression of cytochrome P450 CYP1B1. Can Res 57(14):3026–3031

    CAS  Google Scholar 

  69. 69.

    Rieder CR, Parsons RB, Fitch NJ, Williams AC, Ramsden DB (2000) Human brain cytochrome P450 1B1: immunohistochemical localization in human temporal lobe and induction by dimethylbenz (a) anthracene in astrocytoma cell line (MOG-G-CCM). Neurosci Lett 278(3):177–180

    CAS  PubMed  Google Scholar 

  70. 70.

    Anandatheerthavarada HK, Shankar SK, Ravindranath V (1990) Rat brain cytochromes P-450: catalytic, immunochemical properties and inducibility of multiple forms. Brain Res 536(1–2):339–343

    CAS  PubMed  Google Scholar 

  71. 71.

    Volk B, Meyer RP, von Lintig F, Ibach B, Knoth R (1995) Localization and characterization of cytochrome P450 in the brain. In vivo and in vitro investigations on phenytoin-and phenobarbital-inducible isoforms. Toxicol Lett 82:655–662

    PubMed  Google Scholar 

  72. 72.

    Bhagwat SV, Boyd MR, Ravindranath V (2000) Multiple forms of cytochrome P450 and associated monooxygenase activities in human brain mitochondria. Biochem Pharmacol 59(5):573–582

    CAS  PubMed  Google Scholar 

  73. 73.

    Bhamre S, Anandatheerathavarada HK, Shankar S, Boyd M, Ravindranath V (1993) Purification of multiple forms of cytochrome P450 from a human brain and reconstitution of catalytic activities. Arch Biochem Biophys 301(2):251–255

    CAS  PubMed  Google Scholar 

  74. 74.

    Gervot L, Rochat B, Gautier J, Bohnenstengel F, Kroemer H, De Berardinis V, Martin H, Beaune P, De Waziers I (1999) Human CYP2B6: expression, inducibility and catalytic activities. Pharmacogenet Genomics 9(3):295–306

    CAS  Google Scholar 

  75. 75.

    Miksys S, Lerman C, Shields PG, Mash DC, Tyndale RF (2003). Smoking, alcoholism and genetic polymorphisms alter CYP2B6 levels in human brain. Neuropharmacology 45:122–132

    CAS  PubMed  Google Scholar 

  76. 76.

    Huang C (1998) Immunohistochemical localization of cytochrome P450 enzymes 2C and 4A in the normal rat brain. Chin Med J 111(11):1007–1012

    CAS  PubMed  Google Scholar 

  77. 77.

    Luo G, Zeldin DC, Blaisdell JA, Hodgson E, Goldstein JA (1998) Cloning and expression of murine CYP2Cs and their ability to metabolize arachidonic acid. Arch Biochem Biophys 357(1):45–57

    CAS  PubMed  Google Scholar 

  78. 78.

    Riedl AG, Watts PM, Douek DC, Edwards RJ, Boobis AR, Rose S, Jenner P (2000) Expression and distribution of CYP2C enzymes in rat basal ganglia. Synapse 38(4):392–402

    CAS  PubMed  Google Scholar 

  79. 79.

    Klose TS, Blaisdell JA, Goldstein JA (1999) Gene structure of CYP2C8 and extrahepatic distribution of the human CYP2Cs. J Biochem Mol Toxicol 13(6):289–295

    CAS  PubMed  Google Scholar 

  80. 80.

    Watts P, Riedl A, Douek D, Edwards R, Boobis A, Jenner P, Marsden C (1998) Co-localization of P450 enzymes in the rat substantia nigra with tyrosine hydroxylase. Neuroscience 86(2):511–519

    CAS  PubMed  Google Scholar 

  81. 81.

    Tyndale R, Sunahara R, Inaba T, Kalow W, Gonzalez F, Niznik H (1991) Neuronal cytochrome P450IID1 (debrisoquine/sparteine-type): potent inhibition of activity by (-)-cocaine and nucleotide sequence identity to human hepatic P450 gene CYP2D6. Mol Pharmacol 40(1):63–68

    CAS  PubMed  Google Scholar 

  82. 82.

    Riedl AG, Watts PM, Edwards RJ, Schulz-Utermoehl T, Boobis AR, Jenner P, Marsden CD (1999) Expression and localisation of CYP2D enzymes in rat basal ganglia. Brain Res 822(1–2):175–191

    CAS  PubMed  Google Scholar 

  83. 83.

    Brzezinski MR, Boutelet-Bochan H, Person RE, Fantel AG, Juchau MR (1999) Catalytic activity and quantitation of cytochrome P-450 2E1 in prenatal human brain. J Pharmacol Exp Ther 289(3):1648–1653

    CAS  PubMed  Google Scholar 

  84. 84.

    Boutelet-Bochan H, Huang Y, Juchau M (1997) Expression ofCYP2E1during embryogenesis and fetogenesis in human cephalic tissues: implications for the Fetal Alcohol Syndrome. Biochem Biophys Res Commun 238(2):443–447

    CAS  PubMed  Google Scholar 

  85. 85.

    Dai D, Bai R, Hodgson E, Rose RL (2001) Cloning, sequencing, heterologous expression, and characterization of murine cytochrome P450 3a25*(Cyp3a25), a testosterone 6β-hydroxylase. J Biochem Mol Toxicol 15(2):90–99

    CAS  PubMed  Google Scholar 

  86. 86.

    Wang H, Kawashima H, Strobel HW (1996) cDNA Cloning of a NovelCYP3A from Rat Brain. Biochem Biophys Res Commun 221(1):157–162

    CAS  PubMed  Google Scholar 

  87. 87.

    Murray GI, Pritchard S, Melvin WT, Burke MD (1995) Cytochrome P450 CYP3A5 in the human anterior pituitary gland. FEBS Lett 364(1):79–82

    CAS  PubMed  Google Scholar 

  88. 88.

    Rendic SP, Peter Guengerich F (2018) Human cytochrome P450 enzymes 5–51 as targets of drugs and natural and environmental compounds: mechanisms, induction, and inhibition–toxic effects and benefits. Drug Metab Rev 50(3):256–342

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Lasiuk G, Hegadoren K (2007) The effects of estradiol on central serotonergic systems and its relationship to mood in women. Biol Res Nurs 9(2):147–160

    CAS  PubMed  Google Scholar 

  90. 90.

    Dluzen DE, Horstink MW (2003) Estrogen as neuroprotectant of nigrostriatal dopaminergic system. Endocrine 21(1):67–75

    CAS  PubMed  Google Scholar 

  91. 91.

    Durairaj P, Fan L, Machalz D, Wolber G, Bureik M (2019) Functional characterization and mechanistic modeling of the human cytochrome P450 enzyme CYP4A22. FEBS Lett 593(16):2214–2225

    CAS  PubMed  Google Scholar 

  92. 92.

    Parkinson A, Ogilvie BW (2008) Biotransformation of xenobiotics. Casarett Doull’s Toxicol 7:161–304

    Google Scholar 

  93. 93.

    Nelson DR (2009) The cytochrome p450 homepage. Hum Genom 4(1):59

    CAS  Google Scholar 

  94. 94.

    Ogilvie BW, Usuki E, Yerino P, Parkinson A (2008) In vitro approaches for studying the inhibition of drug-metabolizing enzymes and identifying the drug-metabolizing enzymes responsible for the metabolism of drugs (reaction phenotyping) with emphasis on cytochrome. In: Rodrigues DA (ed) Drug–drug interactions. Informa Healthcare, New York, p 450

    Google Scholar 

  95. 95.

    De Montellano PRO (2005) Cytochrome P450: structure, mechanism, and biochemistry. Springer Science & Business Media, Berlin

    Google Scholar 

  96. 96.

    Omiecinski CJ, Vanden Heuvel JP, Perdew GH, Peters JM (2011) Xenobiotic metabolism, disposition, and regulation by receptors: from biochemical phenomenon to predictors of major toxicities. Toxicol Sci 120(suppl_1):S49–S75

    CAS  PubMed  Google Scholar 

  97. 97.

    Santes-Palacios R, Ornelas-Ayala D, Cabañas N, Marroquín-Pérez A, Hernández-Magaña A, del Rosario Olguín-Reyes S, Camacho-Carranza R, Espinosa-Aguirre JJ (2016) Regulation of human cytochrome P4501A1 (hCYP1A1): a plausible target for chemoprevention? BioMed Res Int 2016:5341081. https://doi.org/10.1155/2016/5341081

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Albrecht C, Boutrot F, Segonzac C, Schwessinger B, Gimenez-Ibanez S, Chinchilla D, Rathjen JP, de Vries SC, Zipfel C (2012) Brassinosteroids inhibit pathogen-associated molecular pattern–triggered immune signaling independent of the receptor kinase BAK1. Proc Natl Acad Sci 109(1):303–308

    CAS  PubMed  Google Scholar 

  99. 99.

    Reedy CJ, Gibney BR (2004) Heme protein assemblies. Chem Rev 104(2):617–650

    CAS  PubMed  Google Scholar 

  100. 100.

    Guengerich FP (2005) Human cytochrome P450 enzymes. In: Cytochrome P450. Springer, Berlin, pp 377–530

    Google Scholar 

  101. 101.

    Guengerich FP (1995) Human cytochrome P450 enzymes. In: Cytochrome P450. Springer, Berlin, pp 473–535

    Google Scholar 

  102. 102.

    Rendic S, Carlo FJD (1997) Human cytochrome P450 enzymes: a status report summarizing their reactions, substrates, inducers, and inhibitors. Drug Metab Rev 29(1–2):413–580

    CAS  PubMed  Google Scholar 

  103. 103.

    Pelkonen O, Turpeinen M, Hakkola J, Honkakoski P, Hukkanen J, Raunio H (2008) Inhibition and induction of human cytochrome P450 enzymes: current status. Arch Toxicol 82(10):667–715

    CAS  PubMed  Google Scholar 

  104. 104.

    Guengerich F (1992) Characterization of human cytochrome P450 enzymes. FASEB J 6(2):745–748

    CAS  PubMed  Google Scholar 

  105. 105.

    Shumaker SA, Legault C, Rapp SR, Thal L, Wallace RB, Ockene JK, Hendrix SL, Jones BN III, Assaf AR, Jackson RD (2003) Estrogen plus progestin and the incidence of dementia and mild cognitive impairment in postmenopausal women: the Women's Health Initiative Memory Study: a randomized controlled trial. JAMA 289(20):2651–2662

    CAS  PubMed  Google Scholar 

  106. 106.

    Santen RJ, Yue W, Wang J-P (2015) Estrogen metabolites and breast cancer. Steroids 99:61–66

    CAS  PubMed  Google Scholar 

  107. 107.

    Xu Y, López M (2018) Central regulation of energy metabolism by estrogens. Mol Metab 15:104–115

    CAS  PubMed  PubMed Central  Google Scholar 

  108. 108.

    Veler CD, Thayer S, Doisy EA (1930) The preparation of the crystalline follicular ovarian hormone: theelin. J Biol Chem 87(2):357–371

    CAS  Google Scholar 

  109. 109.

    Jensen EV, Jacobson HI, Walf AA, Frye CA (2010) Estrogen action: a historic perspective on the implications of considering alternative approaches. Physiol Behav 99(2):151–162

    CAS  PubMed  Google Scholar 

  110. 110.

    Stimmel BF, Grollman A, Huffman MN (1948) The conversion of 16-ketoestrone to estriol in vivo. J Biol Chem 176(1):461–462

    CAS  PubMed  Google Scholar 

  111. 111.

    Alam MN, Ahmad A, Al-Abbasi FA, Ahmad A (2013) Female ovarian steroids in epilepsy: a cause or remedy. Pharmacol Rep 65(4):802–812. https://doi.org/10.1016/s1734-1140(13)71061-2

    CAS  Article  PubMed  Google Scholar 

  112. 112.

    Thayer SA, Levin L, Doisy EA (1931) Characterization of theelol. J Biol Chem 91(2):655–665

    CAS  Google Scholar 

  113. 113.

    Yager JD, Davidson NE (2006) Estrogen carcinogenesis in breast cancer. N Engl J Med 354(3):270–282

    CAS  PubMed  Google Scholar 

  114. 114.

    Stejskalova L, Pavek P (2011) The function of cytochrome P450 1A1 enzyme (CYP1A1) and aryl hydrocarbon receptor (AhR) in the placenta. Curr Pharm Biotechnol 12(5):715–730

    CAS  PubMed  Google Scholar 

  115. 115.

    Allan GF, Hutchins A, Liu X, Clancy J (2001) Induction of the progesterone receptor gene in estrogen target cells monitored by branched DNA signal amplification. Steroids 66(9):663–671. https://doi.org/10.1016/s0039-128x(01)00131-3

    CAS  Article  PubMed  Google Scholar 

  116. 116.

    Cui J, Shen Y, Li R (2013) Estrogen synthesis and signaling pathways during aging: from periphery to brain. Trends Mol Med 19(3):197–209

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117.

    Scharfman HE, MacLusky NJ (2008) Estrogen–growth factor interactions and their contributions to neurological disorders. Headache 48:S77–S89

    PubMed  PubMed Central  Google Scholar 

  118. 118.

    Hayes CL, Spink DC, Spink BC, Cao JQ, Walker NJ, Sutter TR (1996) 17β-estradiol hydroxylation catalyzed by human cytochrome P450 1B1. Proc Natl Acad Sci 93(18):9776–9781

    CAS  PubMed  Google Scholar 

  119. 119.

    An D, Song Z, Yi Y, Zhang Q, Liu J, Zhang Y, Zhou J, Zhao G, Cong D, Li N (2019) Oroxylin A, a methylated metabolite of baicalein, exhibits a stronger inhibitory effect than baicalein on the CYP1B1-mediated carcinogenic estradiol metabolite formation. Phytother Res 33(4):1033–1043

    CAS  PubMed  Google Scholar 

  120. 120.

    Yamazoe Y, Yoshinari K (2019) Prediction of regioselectivity and preferred order of CYP1A1-mediated metabolism: solving the interaction of human and rat CYP1A1 forms with ligands on the template system. Drug Metab Pharmacokinetics

  121. 121.

    Hinrichs JW (2008) Personalized medicine: pharmacogenetics in psychiatry. Curr Pharmacogenomics Person Med (Formerly Current Pharmacogenomics) 6(1):1–11

    CAS  Google Scholar 

  122. 122.

    Williams S, Hossain M, Ferguson L, Busch RM, Marchi N, Gonzalez-Martinez J, Perucca E, Najm IM, Ghosh C (2019) Neurovascular drug biotransformation machinery in focal human epilepsies: brain CYP3A4 correlates with seizure frequency and antiepileptic drug therapy. Mol Neurobiol 56(12):8392–8407

    CAS  PubMed  Google Scholar 

  123. 123.

    Grover S, Talwar P, Baghel R, Kaur H, Gupta M, Gourie-Devi M, Bala K, Sharma S, Kukreti R (2010) Genetic variability in estrogen disposition: Potential clinical implications for neuropsychiatric disorders. Am J Med Genet B Neuropsychiatr Genet 153b(8):1391–1410. https://doi.org/10.1002/ajmg.b.31119

    CAS  Article  PubMed  Google Scholar 

  124. 124.

    Svalheim S, Sveberg L, Mochol M, Tauboll E (2015) Interactions between antiepileptic drugs and hormones. Seizure 28:12–17. https://doi.org/10.1016/j.seizure.2015.02.022

    Article  PubMed  Google Scholar 

  125. 125.

    Reddy DS (2010) Clinical pharmacokinetic interactions between antiepileptic drugs and hormonal contraceptives. Expert Rev Clin Pharmacol 3(2):183–192

    CAS  PubMed  PubMed Central  Google Scholar 

  126. 126.

    Reddy D (2005) Pharmacotherapy of catamenial epilepsy. Indian J Pharmacol 37(5):288

    CAS  Google Scholar 

  127. 127.

    Herzog AG (2008) Catamenial epilepsy: definition, prevalence pathophysiology and treatment. Seizure 17(2):151–159

    PubMed  Google Scholar 

  128. 128.

    Newmark ME, Penry JK (1980) Catamenial epilepsy: a review. Epilepsia 21(3):281–300

    CAS  PubMed  Google Scholar 

  129. 129.

    Pack AM (2015) Having catamenial epilepsy equals fewer seizures in pregnancy: catamenial epilepsy and pregnancy. Epilepsy Curr 15(3):124–125

    PubMed  PubMed Central  Google Scholar 

  130. 130.

    Rogawski MA, Löscher W (2004) The neurobiology of antiepileptic drugs. Nat Rev Neurosci 5(7):553–564

    CAS  PubMed  Google Scholar 

  131. 131.

    Reddy DS (2009) The role of neurosteroids in the pathophysiology and treatment of catamenial epilepsy. Epilepsy Res 85(1):1–30

    CAS  PubMed  PubMed Central  Google Scholar 

  132. 132.

    Morrell MJ, Flynn KL, Seale CG, Doñe S, Paulson AJ, Flaster ER, Ferin M (2001) Reproductive dysfunction in women with epilepsy: antiepileptic drug effects on sex-steroid hormones. CNS Spectr 6(9):771–786

    CAS  PubMed  Google Scholar 

  133. 133.

    Depondt C, Godard P, Espel RS, Da Cruz A, Lienard P, Pandolfo M (2011) A candidate gene study of antiepileptic drug tolerability and efficacy identifies an association of CYP2C9 variants with phenytoin toxicity. Eur J Neurol 18(9):1159–1164

    CAS  PubMed  Google Scholar 

  134. 134.

    Tate SK, Depondt C, Sisodiya SM, Cavalleri GL, Schorge S, Soranzo N, Thom M, Sen A, Shorvon SD, Sander JW (2005) Genetic predictors of the maximum doses patients receive during clinical use of the anti-epileptic drugs carbamazepine and phenytoin. Proc Natl Acad Sci 102(15):5507–5512

    CAS  PubMed  Google Scholar 

  135. 135.

    Silvado CE, Terra VC, Twardowschy CA (2018) CYP2C9 polymorphisms in epilepsy: influence on phenytoin treatment. Pharmacogenomics Person Med 11:51

    CAS  Google Scholar 

  136. 136.

    Perucca E, Hebdige S, Frigo G, Gatti G, Lecchini S, Crema A (1980) Interaction between phenytoin and valproic acid: plasma protein binding and metabolic effects. Clin Pharmacol Ther 28(6):779–789

    CAS  PubMed  Google Scholar 

  137. 137.

    Perucca E (2001) Clinical pharmacology and therapeutic use of the new antiepileptic drugs. Fundam Clin Pharmacol 15(6):405–417

    CAS  PubMed  Google Scholar 

  138. 138.

    Patsalos P, Lascelles P (1977) Effect of sodium valproate on plasma protein binding of diphenylhydantoin. J Neurol Neurosurg Psychiatry 40(6):570–574

    CAS  PubMed  PubMed Central  Google Scholar 

  139. 139.

    Barcs G, Walker EB, Elger CE, Scaramelli A, Stefan H, Sturm Y, Moore A, Flesch G, Kramer L, D'Souza J (2000) Oxcarbazepine placebo-controlled, dose-ranging trial in refractory partial epilepsy. Epilepsia 41(12):1597–1607

    CAS  PubMed  Google Scholar 

  140. 140.

    Potschka H, Fedrowitz M, Löscher W (2001) P-glycoprotein and multidrug resistance-associated protein are involved in the regulation of extracellular levels of the major antiepileptic drug carbamazepine in the brain. Neuro Rep 12(16):3557–3560

    CAS  Google Scholar 

  141. 141.

    Rizzi M, Caccia S, Guiso G, Richichi C, Gorter JA, Aronica E, Aliprandi M, Bagnati R, Fanelli R, D'Incalci M (2002) Limbic seizures induce P-glycoprotein in rodent brain: functional implications for pharmacoresistance. J Neurosci 22(14):5833–5839

    CAS  PubMed  PubMed Central  Google Scholar 

  142. 142.

    Perucca E, Tomson T (2011) The pharmacological treatment of epilepsy in adults. Lancet Neurol 10(5):446–456. https://doi.org/10.1016/s1474-4422(11)70047-3

    CAS  Article  PubMed  Google Scholar 

  143. 143.

    Perucca E, Dulac O, Shorvon S, Tomson T (2001) Harnessing the clinical potential of antiepileptic drug therapy. CNS Drugs 15(8):609–621

    CAS  PubMed  Google Scholar 

  144. 144.

    Cloyd JC, Miller KW, Leppik IE (1981) Primidone kinetics: effects of concurrent drugs and duration of therapy. Clin Pharmacol Ther 29(3):402–407

    CAS  PubMed  Google Scholar 

  145. 145.

    Edoardo Spina EP, Levy R (2005) Predictability of metabolic antiepileptic drug interactions. Antiepileptic Drugs 57

  146. 146.

    Perucca E (2006) Clinically relevant drug interactions with antiepileptic drugs. Br J Clin Pharmacol 61(3):246–255

    CAS  PubMed  Google Scholar 

  147. 147.

    Johannessen IS, Johannessen Landmark C (2010) Antiepileptic drug interactions-principles and clinical implications. Curr Neuropharmacol 8(3):254–267

    CAS  PubMed  PubMed Central  Google Scholar 

  148. 148.

    Horn J, Hansten P (2008) Carbamazepine: watch for many potential drug interactions. Pharmacy Times 74(2):37

    Google Scholar 

  149. 149.

    Benedetti MS (2000) Enzyme induction and inhibition by new antiepileptic drugs: a review of human studies. Fundam Clin Pharmacol 14(4):301–319. https://doi.org/10.1111/j.1472-8206.2000.tb00411.x

    CAS  Article  PubMed  Google Scholar 

  150. 150.

    Anderson GD (2004) Pharmacogenetics and enzyme induction/inhibition properties of antiepileptic drugs. Neurology 63(10 suppl 4):S3–S8

    CAS  PubMed  Google Scholar 

  151. 151.

    Brandt C, May TW (2011) Therapeutic drug monitoring of newer antiepileptic drugs/therapeutic drug monitoring bei neueren Antiepileptika. Laboratoriums Medizin 35(3):161–169

    CAS  Google Scholar 

  152. 152.

    Leppik IE (2004) Zonisamide: chemistry, mechanism of action, and pharmacokinetics. Seizure 13(Suppl 1):S5–S9. https://doi.org/10.1016/j.seizure.2004.04.016(discussion S10)

    Article  PubMed  Google Scholar 

  153. 153.

    Kapetanović IM, Kupferberg HJ, Porter RJ, Theodore W, Schulman E, Penry JK (1981) Mechanism of valproate-phenobarbital interaction in epileptic patients. Clin Pharmacol Ther 29(4):480–486

    PubMed  Google Scholar 

  154. 154.

    Gidal BE, Laurenza A, Hussein Z, Yang H, Fain R, Edelstein J, Kumar D, Ferry J (2015) Perampanel efficacy and tolerability with enzyme-inducing AEDs in patients with epilepsy. Neurology 84(19):1972–1980. https://doi.org/10.1212/wnl.0000000000001558

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  155. 155.

    Nims RW, Prough RA, Jones CR, Stockus DL, Dragnev KH, Thomas PE, Lubet RA (1997) In vivo induction and in vitro inhibition of hepatic cytochrome P450 activity by the benzodiazepine anticonvulsants clonazepam and diazepam. Drug Metab Dispos 25(6):750–756

    CAS  PubMed  Google Scholar 

  156. 156.

    Potschka H, Fedrowitz M, Löscher W (2002) P-Glycoprotein-mediated efflux of phenobarbital, lamotrigine, and felbamate at the blood–brain barrier: evidence from microdialysis experiments in rats. Neurosci Lett 327(3):173–176

    CAS  PubMed  Google Scholar 

  157. 157.

    Engel J, Pedley TA, Aicardi J (1998) Epilepsy: a comprehensive textbook, vol 3. Lippincott-Raven, Philadelphia

    Google Scholar 

  158. 158.

    Zaccara G, Perucca E (2014) Interactions between antiepileptic drugs, and between antiepileptic drugs and other drugs. Epileptic Disord 16(4):409–431. https://doi.org/10.1684/epd.2014.0714

    Article  PubMed  Google Scholar 

Download references

Funding

Not applicable.

Author information

Affiliations

Authors

Contributions

All authors contributed to the design, material preparation, data collection. Analysis and writing pattern were done by GT. The first draft of the manuscript was written by MG. GT reviewed, commented and made final changes on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ganesh Thapa.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gautam, M., Thapa, G. Cytochrome P450-mediated estrogen catabolism therapeutic avenues in epilepsy. Acta Neurol Belg (2020). https://doi.org/10.1007/s13760-020-01454-8

Download citation

Keywords

  • Epilepsy
  • Estradiol
  • Anti-epileptic drug (AED)
  • Cytochrome P-450
  • Metabolism