Skip to main content

Advertisement

Log in

Does retina play a role in Parkinson's Disease?

  • Review article
  • Published:
Acta Neurologica Belgica Aims and scope Submit manuscript

Abstract

Visual disorder is one of the non-motor symptoms found in Parkinson’s disease (PD). It can be easily identified in the early stages even before the spread of pathological conditions to the brain parts. Studies have revealed that loss of dopamine (DA) cells in retinal layers is a prime cause for both retinal disturbance and pathological conditions of PD. This reduction of DA in retina is due to the aggregation of phosphorylated α-synuclein (aSyn) in the intra-retinal region, which eventually results in visual impairment in PD. Until now, very limited studies have been focused on the mechanism of aSyn influence and DA depletion as a cause for both retinal layer dysfunction and PD. Thus, more research is warranted to provide the missing connection between the exact role of DA and aSyn as a risk factor for visual problems in PD. Hence, the current review’s focus is on the function and effects of DA degeneration in retinal cells of PD. Further, we suggest that iron plays a major role in regulating the aggregation of aSyn in the DA cells of retina and brain in PD. The study finds that the unidentified pathophysiological role of retinal degeneration in PD is an essential biomarker that needs further investigation to use it as a novel therapy in treating retinal dysfunctions in PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

PD:

Parkinson’s disease

AD:

Alzhiemer’s disease

DA:

Dopaminergic neurons

aSYN:

α-Synuclein

OCT:

Optical coherence tomography

mfERG:

Multifocal ERG

ERG:

Electroretinograms

VEP:

Visual-evoked potentials

TH:

Tyrosine hydroxylase

MPTP:

1-Methyl, 4-phenyl, 1-2-3-6-tetrahydropyridine

PERG:

Pattern electroretinogram

STF:

Spatial tuning function

RNFL:

Retinal nerve fiber layer

RPE:

Retinal epithelial cells

IPL:

Inner plexiform layer

INL:

Inner nuclear layer

GCL:

Ganglion cell layer

PL:

Photoreceptor layer

GPCR:

G-protein coupled receptor protein

cAMP:

Cycline adenosine monophosphate

DAT:

Dopamine transporter

LTS:

Lewy-type α-synucleinopathy

DARC:

Detection of apoptosing retinal cells

SD-OCT:

Spectral-domain optical coherence tomography

VH:

Visual hallucination

References

  1. Archibald NK, Clarke MP, Mosimann UP, Burn DJ (2009) The retina in Parkinson’s disease. Brain 132:1128–1145

    PubMed  Google Scholar 

  2. Bodis-Wollner I (2009) Retinopathy in Parkinson disease. J Neural Transm Suppl 116:1493–1501

    Google Scholar 

  3. Aydin TS, Umit D, Nur OM, Fatih U, Asena K, Nefse OY, Serpil Y (2018) Optical coherence tomography findings in Parkinson’s disease. Kaohsiung J Med Sci 34:166–171

    PubMed  Google Scholar 

  4. Zhou Z, Chen T, Wang M, Jin L, Zhao Y, Chen S, Wang C, Zhang G, Wang Q, Deng Q, Liu Y, Morgan IG, He M, Liu Y, Congdon N (2017) Pilot study of a novel classroom designed to prevent myopia by increasing children’s exposure to outdoor light. PLoS One 12:e0181772

    PubMed  PubMed Central  Google Scholar 

  5. Djamgoz MB, Hankins MW, Hirano J, Archer SN (1997) Neurobiology of retinal dopamine in relation to degenerative states of the tissue. Vision Res 37:3509–3529

    CAS  PubMed  Google Scholar 

  6. Ortuño-Lizarán I, Beach TG, Serrano GE, Walker DG, Adler CH, Cuenca N (2018) Phosphorylated α-synuclein in the retina is a biomarker of Parkinson's disease pathology severity. Mov Disord 33:1315–1324

    PubMed  PubMed Central  Google Scholar 

  7. Mammadova N, Summers CM, Kokemuller RD, He Q, Ding S, Baron T, Yu C, Valentine RJ, Sakaguchi DS, Kanthasamy AG, Greenlee JJ (2019) Accelerated accumulation of retinal α-synuclein (pSer129) and tau, neuroinflammation, and autophagic dysregulation in a seeded mouse model of Parkinson's disease. Neurobiol Dis 121:1–6

    CAS  PubMed  Google Scholar 

  8. Funke C, Schneider SA, Berg D, Kell DB (2013) Genetics and iron in the systems biology of Parkinson's disease and some related disorders. Neurochem Int 62:637–652

    CAS  PubMed  Google Scholar 

  9. Armstrong RA (2008) Visual signs and symptoms of Parkinson's disease. Clin Exp Optom 91:129–138

    PubMed  Google Scholar 

  10. Lin TP, Rigby H, Adler JS, Hentz JG, Balcer LJ, Galetta SL, Devick S, Cronin R, Adler CH (2015) Abnormal visual contrast acuity in Parkinson’s disease. J Parkinsons Dis 5:125–130

    PubMed  Google Scholar 

  11. Oh YS, Kim JS, Chung SW, Song IU, Kim YD, Kim YI, Lee KS (2011) Color vision in Parkinson’s disease and essential tremor. Eur J Neurol 18:577–583

    PubMed  Google Scholar 

  12. Diederich NJ, Raman R, Leurgans S, Goetz CG (2002) Progressive worsening of spatial and chromatic processing deficits in Parkinson disease. Arch Neurol 59:1249–1252

    PubMed  Google Scholar 

  13. Polo V, Satue M, Rodrigo MJ, Otin S, Alarcia R, Bambo MP, Fuertes MI, Larrosa JM, Pablo LE, Garcia-Martin E (2016) Visual dysfunction and its correlation with retinal changes in patients with Parkinson’s disease: an observational cross-sectional study. BMJ Open 6:e009658

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Shibasaki H, Tsuji S, Kuroiwa Y (1979) Oculomotor abnormalities in Parkinson’s disease. Arch Neurol 36:360–364

    CAS  PubMed  Google Scholar 

  15. Elmar HP, Reinhart J, Dorothée L, Johanna H, Albert CL, Wolfgang B, Jan K (2012) Eye movement impairments in Parkinson’s disease: possible role of extradopaminergic mechanisms. BMC Neurol 12:5

    Google Scholar 

  16. Manohar SG, Husain M (2015) Reduced pupillary reward sensitivity in Parkinson's disease. NPJ Parkinson’s Dis 1:15026

    CAS  Google Scholar 

  17. Armstrong RA (2015) Oculo-visual dysfunction in Parkinson’s disease. J Parkinsons Dis 5:715–726

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Armstrong RA (2017) Visual dysfunction in Parkinson's disease. Int Rev Neurobiol 134:921–946

    PubMed  Google Scholar 

  19. Veruki ML (1997) Dopaminergic neurons in the rat retina express dopamine D2/3 receptors. Eur J Neurosci 9:1096–1100

    CAS  PubMed  Google Scholar 

  20. He S, Weiler R, Vaney DI (2000) Endogenous dopaminergic regulation of horizontal cell coupling in the mammalian retina. J Comp Neurol 418:33–40

    CAS  PubMed  Google Scholar 

  21. Xia XB, Mills SL (2004) Gap junctional regulatory mechanisms in the AII amacrine cell of the rabbit retina. Vis Neurosci 21:791–805

    PubMed  PubMed Central  Google Scholar 

  22. Ribelayga C, Cao Y, Mangel SC (2008) The circadian clock in the retina controls rod-cone coupling. Neuron 59:790–801

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Nguyen-Legros J (1988) Functional neuroarchitecture of the retina: hypothesis on the dysfunction of retinal dopaminergic circuitry in Parkinson’s disease. Surg Radiol Anat 10:137–144

    CAS  PubMed  Google Scholar 

  24. Cuenca N, Herrero MT, Angulo A, De Juan E, Martınez- Navarrete GC, Lopez S, Barcia C, Martín-Nieto J (2005) Morphological impairments in retinal neurons of the scotopic visual pathway in a monkey model of Parkinson’s disease. J Comp Neurol 493:261–273

    CAS  PubMed  Google Scholar 

  25. Crawford TJ, Goodrich S, Henderson L, Kennard C (1989) Predictive responses in PD: manual keypresses and saccadic eye movements to regular stimulus events. J Neurol Neurosurg Psychiatry 52:1033–1042

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Biehlmaier O, Alam M, Schmidt WJ (2007) A rat model of Parkinsonism shows depletion of dopamine in the retina. Neurochem Int 50:189–195

    CAS  PubMed  Google Scholar 

  27. Ahmad I, Zhao X, Parameswaran S, Destache CJ, Rodriguez-Sierra J, Thoreson WB, Ahmad H, Sorrentino J, Balasubramanian S (2015) Direct differentiation of adult ocular progenitors into striatal dopaminergic neurons. Int J Stem Cells 8:106

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Stutz B, da Conceição FS, Santos LE, Cadilhe DV, Fleming RL, Acquarone M, Gardino PF, de Melo Reis RA, Dickson PW, Dunkley PR, Rehen S (2014) Murine dopaminergic Müller cells restore motor function in a model of Parkinson's disease. J Neurochem 128(6):829–840

    CAS  PubMed  Google Scholar 

  29. Ghilardi F, Chung M, Bodis-Wollner E, Dvorzniak IM, Glover A, Onofrj M (1988) Systemic 1-methyl, 4-phenyl, 1-2-3-6-tetrahydropyridine (MPTP) administration decreases retinal dopamine content in primates. Life Sci 43(3):255–262

    CAS  PubMed  Google Scholar 

  30. Bodis-Wollner I (1990) Visual deficits related to dopamine deficiency in experimental animals and Parkinson’s disease patients. Trends Neurosci 13(7):296–302

    CAS  PubMed  Google Scholar 

  31. Tatton WG, Kwan MM, Verrier MC, Seniuk NA, Theriault E (1990) MPTP produces reversible disappearance of tyrosine hydroxylase-containing retinal amacrine cells. Brain Res 527(1):21–31

    CAS  PubMed  Google Scholar 

  32. Dyer RS, Howell WE, MacPhail RC (1981) Dopamine depletion slows retinal transmission. Exp Neurol 71(2):326–340

    CAS  PubMed  Google Scholar 

  33. Onofrj M, Bodis-Wollner I (1982) Dopaminergic deficiency causes delayed visual evoked potentials in rats. Ann Neurol 11(5):484–490

    CAS  PubMed  Google Scholar 

  34. Febbraro F, Giorgi M, Caldarola S, Loreni F, Romero-Ramos M (2012) Alpha-synuclein expression is modulated at the translational level by iron. NeuroReport 23:576–580

    CAS  PubMed  Google Scholar 

  35. Lu Y, Prudent M, Fauvet B, Lashuel HA, Girault HH (2011) Phosphorylation of alpha-synuclein at Y125 and S129 alters its metal binding properties: implications for understanding the role of alpha-synuclein in the pathogenesis of Parkinson’s disease and related disorders. ACS Chem Neurosci 2:667–675

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Davies P, Moualla D, Brown DR (2011) Alpha-synuclein is a cellular ferrireductase. PLoS One 6:e15814

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Paris I, Martinez-Alvarado P, Cardenas S, Perez-Pastene C, Graumann R, Fuentes P, Olea-Azar C, Caviedes P, Segura-Aguilar J (2005) Dopamine-dependent iron toxicity in cells derived from rat hypothalamus. Chem Res Toxicol 18:415–419

    CAS  PubMed  Google Scholar 

  38. Duce JA, Wong BX, Durham H, Devedjian JC, Smith DP, Devos D (2017) Post translational changes to α-synuclein control iron and dopamine trafficking; a concept for neuron vulnerability in Parkinson’s disease. Mol Neurodegener 12:45

    PubMed  PubMed Central  Google Scholar 

  39. Gallegos S, Pacheco C, Peters C, Opazo C, Aguayo LG (2015) Features of alpha-synuclein that could explain the progression and irreversibility of Parkinson’s disease. Front Neurosci 9:1–11

    Google Scholar 

  40. Lotharius J, Brundin P (2002) Pathogenesis of Parkinson’s disease: dopamine, vesicles and alpha-synuclein. Nat Rev Neurol 3:932–942

    CAS  Google Scholar 

  41. Lee JY, Ahn J, Kim TW, Jeon BS (2014) Optical coherence tomography in Parkinson's disease: is the retina a biomarker? J Parkinson's Dis 4:197–204

    Google Scholar 

  42. Bodis-Wollner I, Miri S, Glazman S (2014) Venturing into the no-man’s land of the retina in Parkinson’s disease. Mov Disord 29:15–22

    PubMed  Google Scholar 

  43. Beach TG, Carew J, Serrano G, Adler CH, Shill HA, Sue LI, Sabbagh MN, Akiyama H, Cuenca N (2014) Phosphorylated alpha-synuclein-immunoreactive retinal neuronal elements in Parkinson’s disease subjects. Neurosci Lett 571:34–38

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Surguchov A, McMahan B, Masliah E, Surgucheva I (2001) Synucleins in ocular tissues. J Neurosci Res 65:68–77

    CAS  PubMed  Google Scholar 

  45. Chandra S, Gallardo G, Fernandez-Chacon R, Schluter OM, Sudhof TC (2005) Alpha-synuclein cooperates with CSPalpha in preventing neurodegeneration. Cell 123:383–396

    CAS  PubMed  Google Scholar 

  46. Veys L, Vandenabeele M, Ortuño-Lizarán I, Baekelandt V, Cuenca N, Moons L, De Groef L (2019) Retinal α-synuclein deposits in Parkinson’s disease patients and animal models. Acta Neuropathol 5:1–7

    Google Scholar 

  47. Martınez-Navarrete GC, Martın-Nieto J, Esteve RJ, Angulo A, Cuenca N (2007) Alpha synuclein gene expression profile in the retina of vertebrates. Mol Vis 13:949–961

    PubMed  PubMed Central  Google Scholar 

  48. Bodis-Wollner I, Kozlowski PB, Glazman S, Miri S (2014) α-Synuclein in the inner retina in Parkinson disease. Ann Neurol 75:964–966

    CAS  PubMed  Google Scholar 

  49. Le W, Dong J, Li S, Korczyn AD (2017) Can biomarkers help the early diagnosis of Parkinson’s disease? Neurosci Bull 33:535–542

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Weil RS, Schrag AE, Warren JD, Crutch SJ, Lees AJ, Morris HR (2016) Visual dysfunction in Parkinson’s disease. Brain 139:2827–2843

    PubMed  PubMed Central  Google Scholar 

  51. Cuenca N, Fernandez-Sanchez L, Campello L, Maneu V, De la Villa P, Lax P, Pinilla I (2014) Cellular responses following retinal injuries and therapeutic approaches for neurodegenerative diseases. Prog Retin Eye Res 43:17–75

    CAS  PubMed  Google Scholar 

  52. Miri S, Glazman S, Mylin L, Bodis-Wollner I (2016) A combination of retinal morphology and visual electrophysiology testing increases diagnostic yield in Parkinson’s disease. Parkinsonism Relat Disord 22:S134–S137

    PubMed  Google Scholar 

  53. Nowacka B, Lubinski W, Honczarenko K, Potemkowski A, Safranow K (2015) Bioelectrical function and structural assessment of the retina in patients with early stages of Parkinson's disease (PD). Doc Ophthalmol 131:95–104

    PubMed  PubMed Central  Google Scholar 

  54. Inzelberg R, Ramirez JA, Nisipeanu P, Ophir A (2004) Retinal nerve fiber layer thinning in Parkinson disease. Vis Res 44:2793–2797

    PubMed  Google Scholar 

  55. Kirbas S, Turkyilmaz K, Tufekci A, Durmus M (2013) Retinal nerve fiber layer thickness in Parkinson disease. J Neuroophthalmol 33:62–65

    PubMed  Google Scholar 

  56. La Morgia C, Barboni P, Rizzo G, Carbonelli M, Savini G, Scaglione C, Capellari S, Bonazza S, Giannoccaro MP, Calandra BG, Liguori R (2013) Loss of temporal retinal nerve fibers in Parkinson disease: a mitochondrial pattern? Eur J Neurol 20:198–201

    PubMed  Google Scholar 

  57. Altintas O, Iseri P, Ozkan B, Caglar Y (2008) Correlation between retinal morphological and functional findings and clinical severity in Parkinson’s disease. Doc Ophthalmol 116:137–146

    PubMed  Google Scholar 

  58. Moreno-Ramos T, Benito-Le´on J, Villarejo A, Bermejo-Pareja F (2013) Retinal nerve fiber layer thinning in dementia associated with Parkinson’s disease, dementia with Lewy bodies, and Alzheimer’s disease. J Alzheimer’s Dis 34:659–694

    CAS  Google Scholar 

  59. Garcia-Martin E, Satue M, Otin S, Fuertes I, Alarcia R, Larrosa JM, Polo V, Pablo LE (2013) Retina measurements for diagnosis of Parkinson disease. Retina 34:971–980

    Google Scholar 

  60. Satue M, Garcia-Martin E, Fuertes I, Otin S, Alarcia R, Herrero R, Bambo MP, Pablo LE, Fernandez FJ (2013) Use of Fourier-domain OCT to detect retinal nerve fiber layer degeneration in Parkinson’s disease patients. Eye 27:507–514

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Albrecht P, Muller AK, Sudmeyer M, Ferrea S, Ringelstein M, Cohn E, Aktas O, Dietlein T, Lappas A, Foerster A, Hartung HP, Schnitzler A, Methner A (2012) Optical coherence tomography in Parkinsonian syndromes. PLoS One 7:e34891

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Cubo E, L´opez Pe˜na MJ, Diez-Feijo VE, P´erez GO, Garcia GP, Araus GE, Prieto TR, Mariscal PN, Armesto D (2014) Lack of association of morphologic and functional retinal changes with motor and non-motor symptoms severity in Parkinson’s disease. J Neural Transm 121:139–145

    PubMed  Google Scholar 

  63. Garcia-Martin E, Satue M, Fuertes I, Otin S, Alarcia R, Herrero R, Bambo MP, Fernandez J, Pablo LE (2012) Ability and reproducibility of Fourier-domain optical coherence tomography to detect retinal nerve fiber layer atrophy in Parkinson’s disease. Ophthalmology 119:2161–2167

    PubMed  Google Scholar 

  64. Ma LJ, Xu LL, Mao CJ, Fu YT, Ji XY, Shen Y, Chen J, Yang YP, Liu CF (2018) progressive changes in the retinal structure of patients with Parkinson’s disease. J Parkinson's Dis 8:85–92

    Google Scholar 

  65. Satue M, Rodrigo MJ, Obis J, Vilades E, Gracia H, Otin S, Fuertes MI, Alarcia R, Crespo JA, Polo V, Larrosa JM, Pablo LE, Garcia-Martin E (2017) Evaluation of progressive visual dysfunction and retinal degeneration in patients with Parkinson’s disease. Investig Ophthalmol Vis Sci 58:1151–1157

    Google Scholar 

  66. Garcia-Martin E, Larrosa JM, Polo V, Satue M, Marques ML, Alarcia R, Seral M, Fuertes I, Otin S, Pablo LE (2014) Distribution of retinal layer atrophy in patients with Parkinson disease and association with disease severity and duration. Am J Ophthalmol 157:470–478

    PubMed  Google Scholar 

  67. Schneider M, M¨uller HP, Lauda F, Tumani H, Ludolph AC, Kassubek J, Pinkhardt EH (2014) Retinal single-layer analysis in Parkinsonian syndromes: an optical coherence tomography study. J Neural Transm 121:41–47

    PubMed  Google Scholar 

  68. Schrier EM, Adam CR, Spund B, Glazman S, Bodis-Wollner I (2012) Interocular asymmetry of foveal thickness in Parkinson’s disease. J Ophthalmol 2012:728457

    Google Scholar 

  69. Hajee ME, March WF, Lazzaro DR, Wolintz AH, Shrier EM, Glazman S, Bodis-Wollner IG (2009) Inner retinal layer thinning in Parkinson’s disease. Arch Ophthalmol 127:737–741

    PubMed  Google Scholar 

  70. Adam CR, Shrier E, Ding Y, Glazman S, Bodis-Wollner I (2013) Correlation of inner retinal thickness evaluated by spectral-domain optical coherence tomography and contrast sensitivity in Parkinson disease. J Neuroophthalmol 33:137–142

    PubMed  Google Scholar 

  71. Aaker GD, Myung JS, Ehrlich JR, Mohammed M, Henchcliffe C, Kiss S (2010) Detection of retinal changes in Parkinson’s disease with spectral-domain optical coherence tomography. Clin Ophthalmol 4:1427–1432

    PubMed  PubMed Central  Google Scholar 

  72. Normando EM, Davis BM, De Groef L, Nizari S, Turner LA, Ravindran N, Pahlitzsch M, Brenton J, Malaguarnera G, Guo L, Somavarapu S (2016) The retina as an early biomarker of neurodegeneration in a rotenone-induced model of Parkinson’s disease: evidence for a neuroprotective effect of rosiglitazone in the eye and brain. Acta Neuropathol Commun 4:86

    PubMed  PubMed Central  Google Scholar 

  73. Cordeiro MF, Guo L, Coxon KM, Duggan J, Nizari S, Normando EM, Sensi SL, Sillito AM, Fitzke FW, Salt TE, Moss SE (2010) Imaging multiple phases of neurodegeneration: a novel approach to assessing cell death in vivo. Cell Death Dis 1:e3

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Kwapong WR, Ye H, Peng C, Zhuang X, Wang J, Shen M, Lu F (2018) Retinal microvascular impairment in the early stages of Parkinson's disease. Investig Ophthalmol Vis Sci 59:4115–4122

    CAS  Google Scholar 

  75. Chorostecki J, Seraji-Bozorgzad N, Shah A, Bao F, Bao G, George E, Gorden V, Caon C, Frohman E, Bhatti MT, Khan O (2015) Characterization of retinal architecture in Parkinson's disease. J Neurol Sci 355:44–48

    PubMed  Google Scholar 

  76. Garcia-Martin E, Rodriguez-Mena D, Satue M, Almarcegui C, Dolz I, Alarcia R, Seral M, Polo V, Larrosa JM, Pablo LE (2014) Electrophysiology and optical coherence tomography to evaluate Parkinson disease severity. Investig Ophthalmol Vis Sci 55:696–705

    Google Scholar 

  77. Veselá O, Růžička E, Jech R, Roth J, Štěpánková K, Mečíř P, Solano Z, Preclíková E (2001) Colour discrimination impairment is not a reliable early marker of Parkinson's disease. J Neurol 248:975–978

    PubMed  Google Scholar 

  78. Sun L, Zhang H, Gu ZQ, Cao M, Li DW, Chan P (2014) Stereopsis impairment is associated with decreased color perception and worse motor performance in Parkinson’s disease. Eur J Med Res 19:29

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

I thank Sankara Nethralaya, Chennai, Avinashilingam Institute for Home Science and Higher Education for Women, and Bharathiar University, Coimbatore, for providing the necessary help to carry out the article review process.

Funding

No funding was obtained to carry out this review article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vellingiri Balachandar.

Ethics declarations

Conflict of interest

SMD, IM, APN, DV and VB declare that they have no conflict of interest.

Research involving human participants and/or animals

This is a review article; thus, it does not contain any studies with human participants performed by any of the authors.

Informed consent

This is a review article; thus it does not need any consent form.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohana Devi, S., Mahalaxmi, I., Aswathy, N.P. et al. Does retina play a role in Parkinson's Disease?. Acta Neurol Belg 120, 257–265 (2020). https://doi.org/10.1007/s13760-020-01274-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13760-020-01274-w

Keywords

Navigation