Skip to main content

Advertisement

Log in

Evaluation of optic nerve head changes with optic coherence tomography in patients with idiopathic intracranial hypertension

  • Original Article
  • Published:
Acta Neurologica Belgica Aims and scope Submit manuscript

Abstract

In the case of mild papilledema, fundoscopy findings may sometimes be insufficient, leading to false and misleading indices in the diagnosis of early-stage idiopathic intracranial hypertension (IIH). This study aims to evaluate these patients through optic coherence tomography (OCT). The study included 54 individuals diagnosed with IIH and 48 healthy individuals in the control group. All patients underwent neurological and ophthalmologic examinations. Opening pressure values of patients’ cerebrospinal fluid (CSF) were recorded. We measured the thickness of the retinal nerve fiber layer (RNFL) and the ganglion cell complex, cup volume, and the optical disc area, as well as the neuroretinal rim in both groups. A total of 108 eyes from the patient group and 96 eyes from the control group were evaluated. It was found that the mean value of the RNFL thickness of the IIH patients was greater than the control group in the following eight segments: superior nasal, superior temporal, inferior nasal, inferior temporal, nasal superior, nasal inferior, temporal superior, and temporal inferior (p < 0.01 for all). In contrast to the control group, the disc and rim area values of the patient group were higher (p < 0.01), while the cup volume was smaller (p < 0.01) than in the control group. In the patient group, a positive correlation was observed between the papilledema grade and the RNFL thickness (r = 0.64, p < 0.01), CSF opening pressure (r = 0.59, p < 0.01), disc area (r = 0.68, p < 0.01), and rim area (r = 0.70, p < 0.01). Furthermore, RNFL thickness, CSF opening pressure (r = 0.61, p < 0.01), disc area (r = 0.71, p < 0.01), and rim area (r = 0.71, p < 0.01) values were determined to be positively correlated to each other. OCT is believed to contribute to the diagnosis of IIH, by providing reliable data on optical cup volume, optical disc and rim area, and a greater RNFL thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. De Simone R, Ranieri A, Montella S et al (2014) Revised diagnostic criteria for the pseudotumor cerebri syndrome in adults and children. Neurology 18(11):1011–1012

    Article  Google Scholar 

  2. Fraser C, Plant GT (2011) The syndrome of pseudotumour cerebri and idiopathic intracranial hypertension. Curr Opin Neurol 24(1):12–17

    Article  PubMed  Google Scholar 

  3. Julayanont P, Karukote A, Ruthirago D, Panikkath D,et al. Idiopathic intracranial hypertension: ongoing clinical challenges and future prospects. J Pain Res. 2016;9:87–99

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Friedman DI (2014) The pseudotumor cerebri syndrome. Neurol Clin 32(2):363–396

    Article  PubMed  Google Scholar 

  5. Thurtell MJ, Bruce BB, Newman NJ, et al. An update on idiopathic intracranial hypertension. Rev Neurol Dis. 2010;7(2–3):e56–e68

    PubMed  PubMed Central  Google Scholar 

  6. Chan JW (2017) Current concepts and strategies in the diagnosis and management of idiopathic intracranial hypertension in adults. J Neurol 264(8):1622–1633

    Article  CAS  PubMed  Google Scholar 

  7. Chen JJ, Thurtell MJ, Longmuir RA et al (2015) Causes and prognosis of visual acuity loss at the time of initial presentation in idiopathic intracranial hypertension. Invest Ophthalmol Vis Sci 56(6):3850–3859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Passi N, Degnan AJ, Levy LM (2013) MR imaging of papilledema and visual pathways: effects of increased intracranial pressure and pathophysiologic mechanisms. AJNR Am J Neuroradiol 34(5):919–924

    Article  CAS  PubMed  Google Scholar 

  9. Marzoli SB, Ciasca P, Curone M et al (2013) Quantitative analysis of optic nerve damage in idiopathic intracranial hypertension (IIH) at diagnosis. Neurol Sci 34(Suppl 1):S143–S145

    Article  PubMed  Google Scholar 

  10. Carta A, Favilla S, Prato M et al.Accuracy of funduscopy to identify true edema versus pseudoedema of the optic disc. Invest Ophthalmol Vis Sci. 2012;53(1):1–6

    Article  PubMed  Google Scholar 

  11. Mollan SP, Markey KA, Benzimra JD et al (2014) A practical approach to, diagnosis, assessment and management of idiopathicintracranial hypertension. Pract Neurol 14(6):380–390

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kardon R.Optical coherence tomography in papilledema: what am I missing? J Neuroophthalmol. 2014;34 Suppl:S10–S17

    Article  PubMed  Google Scholar 

  13. Heidary G, Rizzo JF III. Use of optical coherence tomography to evaluate papilledema and pseudopapilledema. Semin Ophthalmol. 2010;25(5–6):198–205

    Article  PubMed  Google Scholar 

  14. Rebolleda G, Diez-Alvarez L, Casado A et al. OCT: new perspectives in neuro-ophthalmology. Saudi J Ophthalmol. 2010;29(1):9–25

    Article  Google Scholar 

  15. Langwińska-Wośko E, Litwin T, Dzieżyc K et al (2017) Optical coherence tomography as a marker of neurodegeneration in patients with Wilson’s disease. Acta Neurol Belg 117(4):867–871

    Article  PubMed  PubMed Central  Google Scholar 

  16. Noval S, Contreras I, Muñoz S (2011) Optical coherence tomography in multiple sclerosis and neuromyelitis optica: an update. Mult Scler Int 2011:472790

    PubMed  PubMed Central  Google Scholar 

  17. Optical Coherence Tomography Substudy Committee; NORDIC Idiopathic Intracranial Hypertension Study Group. Auinger P, Durbin M, Feldon S et al. Papilledema outcomes from the optical coherence tomography substudy of the idiopathic intracranial hypertension treatment trial. Ophthalmology. 2015;122(9):1939.e2–1945.e2

    Google Scholar 

  18. Monteiro ML, Afonso CL (2014) Macular thickness measurements with frequency domain-OCT for quantification of axonal loss in chronic papilledema from pseudotumor cerebri syndrome. Eye (Lond) 28(4):390–398

    Article  CAS  Google Scholar 

  19. Huang-Link YM, Al-Hawasi A, Oberwahrenbrock T et al (2015) OCT measurements of optic nerve head changes in idiopathic intracranial hypertension. Clin Neurol Neurosurg 130:122–127

    Article  PubMed  Google Scholar 

  20. Headache Classification Committee of the International Headache Society (IHS) (2013) The international classification of headache disorders, 3rd edition (beta version). Cephalalgia 33(9):629–808

    Article  Google Scholar 

  21. Yohannan J, Wang J, Brown J et al (2017) Evidence-based criteria for assessment of visual field reliability. Ophthalmology 124(11):1612–1620

    Article  PubMed  PubMed Central  Google Scholar 

  22. Heijl A, Patella VM, Bengstsson B (2012) The field analyzer primer: effective perimetry, 4th edn. Carl Zeiss Meditec, Dublin

    Google Scholar 

  23. Cameron JR, Albrecht P, Cruz-Herranz A et al. The APOSTEL recommendations for reporting quantitative optical coherence tomography studies. Neurology. 2016;87(18):1960

    Article  PubMed  Google Scholar 

  24. Skau M, Yri H, Sander B et al (2013) Diagnostic value of optical coherence tomography for intracranial pressure idiopathic intracranial hypertension. Graefes Arch Clin Exp Ophthalmol 251(2):567–574

    Article  PubMed  Google Scholar 

  25. Rebolleda G, Muñoz-Negrete FJ (2009) Follow-up of mild papilledema in idiopathic intracranial hypertension with optical coherence tomography. Invest Ophthalmol Vis Sci 50(11):5197–5200

    Article  PubMed  Google Scholar 

  26. Labib DM. Abdel Raouf DH (2015) Diagnostic value of optic coherans tomography in patients with idiopathic intracranial hypertension. Egypt J Neurol Psychiatry Neurosurg 52(4):249–253

    Article  Google Scholar 

  27. Waisbourd M, Leibovitch I, Goldenberg D et al (2011) OCT assessment of morphological changes of the optic nerve head and macula inidiopathic intracranial hypertension. Clin Neurol Neurosurg 113(10):839–843

    Article  PubMed  Google Scholar 

  28. El-Dairi MA, Holgado S, O’Donnell T et al (2007) Optical coherence tomography as a tool for monitoring pediatric pseudotumor cerebri. J AAPOS 11(6):564–570

    Article  PubMed  Google Scholar 

  29. Kaufhold F, Kadas EM, Schmidt C et al (2012) Optic nerve head quantification in idiopathic intracranial hypertension by spectral domain OCT. PLoS One 7(5):e36965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. OCT Sub-Study Committee for NORDIC Idiopathic Intracranial Hypertension Study Group, Auinger P, Durbin M, Feldon S, Garvin M et al (2014) Baseline OCT measurements in the idiopathic intracranial hypertension treatment trial, part II: correlations and relationship to clinical features. Invest Ophthalmol Vis Sci. 55(12):8173–8179

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasemin Eren.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study was carried out according to 1964 Helsinki Declaration and was approved by the Institutional Ethics Committee.

Informed consent

All patients participating in the study provided informed consent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eren, Y., Kabatas, N., Guven, H. et al. Evaluation of optic nerve head changes with optic coherence tomography in patients with idiopathic intracranial hypertension. Acta Neurol Belg 119, 351–357 (2019). https://doi.org/10.1007/s13760-018-1000-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13760-018-1000-2

Keywords

Navigation