Skip to main content

Evaluation of hydrocephalus patients with 3D-SPACE technique using variant FA mode at 3T


The major advantages of three-dimensional sampling perfection with application optimized contrasts using different flip-angle evolution (3D-SPACE) technique are its high resistance to artifacts that occurs as a result of radiofrequency or static field, the ability of providing images with sub-millimeter voxel size which allows obtaining reformatted images in any plane due to isotropic three-dimensional data with lower specific absorption rate values. That is crucial during examination of cerebrospinal-fluid containing complex structures, and the acquisition time, which is approximately 5 min for scanning of entire cranium. Recent data revealed that T2-weighted (T2W) 3D-SPACE with variant flip-angle mode (VFAM) imaging allows fast and accurate evaluation of the hydrocephalus patients during both pre- and post-operative period for monitoring the treatment. For a better assessment of these patients; radiologists and neurosurgeons should be aware of the details and implications regarding to the 3D-SPACE technique, and they should follow the updates in this field. There could be a misconception about the difference between T2W-VFAM and routine heavily T2W 3D-SPACE images. T2W 3D-SPACE with VFAM imaging is only a subtype of 3D-SPACE technique. In this review, we described the details of T2W 3D-SPACE with VFAM imaging and comprehensively reviewed its recent applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. Kartal MG, Algin O (2014) Evaluation of hydrocephalus and other cerebrospinal fluid disorders with MRI: an update. Insights Imaging 5(4):531–541

    Article  PubMed  PubMed Central  Google Scholar 

  2. Mugler JP 3rd (2014) Optimized three-dimensional fast-spin-echo MRI. J Magn Reson Imaging 39(4):745–767

    Article  PubMed  Google Scholar 

  3. Kartal MG, Ocakoglu G, Algin O (2015) Feasibility of 3-dimensional sampling perfection with application optimized contrast sequence in the evaluation of patients with hydrocephalus. J Comput Assist Tomogr 39(3):321–328

    PubMed  Google Scholar 

  4. Gerigk L, Bostel T, Hegewald A et al (2012) Dynamic magnetic resonance imaging of the cervical spine with high-resolution 3-dimensional T2-imaging. Clin Neuroradiol 22(1):93–99

    Article  PubMed  CAS  Google Scholar 

  5. Mugler JP 3rd, Bao S, Mulkern RV et al (2000) Optimized single-slab three-dimensional spin-echo MR imaging of the brain. Radiology 216(3):891–899

    Article  PubMed  Google Scholar 

  6. Algin O (2015) Prediction of endoscopic third ventriculostomy (ETV) success with 3D-SPACE technique. Neurosurg Rev 38(2):395–397

    Article  PubMed  Google Scholar 

  7. Algin O, Ucar M, Ozmen E et al (2015) Assessment of third ventriculostomy patency with the 3D-SPACE technique: a preliminary multicenter research study. J Neurosurg 122(6):1347–1355

    Article  PubMed  Google Scholar 

  8. Algin O, Turkbey B (2012) Evaluation of aqueductal stenosis by 3D sampling perfection with application-optimized contrasts using different flip angle evolutions sequence: preliminary results with 3T MR imaging. Am J Neuroradiol 33(4):740–746

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Algin O, Turkbey B, Ozmen E et al (2013) Evaluation of spontaneous third ventriculostomy by three-dimensional sampling perfection with application-optimized contrasts using different flip-angle evolutions (3D-SPACE) sequence by 3T MR imaging: preliminary results with variant flip-angle mode. J Neuroradiol 40(1):11–18

    Article  PubMed  Google Scholar 

  10. Ucar M, Tokgoz N, Damar C et al (2015) Diagnostic performance of heavily T2-weighted techniques in obstructive hydrocephalus: comparison study of two different 3D heavily T2-weighted and conventional T2-weighted sequences. Jpn J Radiol 33(2):94–101

    Article  PubMed  Google Scholar 

  11. Dinçer A, Kohan S, Ozek MM (2009) Is all “communicating” hydrocephalus really communicating? Prospective study on the value of 3D-constructive interference in steady state sequence at 3T. Am J Neuroradiol 30(10):1898–1906

    Article  PubMed  PubMed Central  Google Scholar 

  12. Held P, Fellner C, Fellner F et al (1997) MRI of inner ear and facial nerve pathology using 3D MP-RAGE and 3D CISS sequences. Br J Radiol 70(834):558–566

    Article  PubMed  CAS  Google Scholar 

  13. Park SH, Han PK, Choi SH (2015) Physiological and functional magnetic resonance imaging using balanced steady-state free precession. Korean J Radiol 16(3):550–559

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lollis SS, Mamourian AC, Vaccaro TJ, Duhaime AC (2010) Programmable CSF shunt valves: radiographic identification and interpretation. Am J Neuroradiol 31(7):1343–1346

    Article  PubMed  PubMed Central  Google Scholar 

  15. Preuss M, Hoffmann KT, Reiss-Zimmermann M et al (2013) Updated physiology and pathophysiology of CSF circulation—the pulsatile vector theory. Childs Nerv Syst 29(10):1811–1825

    Article  PubMed  CAS  Google Scholar 

  16. Yadav YR, Mukerji G, Parihar V et al (2009) Complex hydrocephalus (combination of communicating and obstructive type): an important cause of failed endoscopic third ventriculostomy. BMC Res Notes 2:137

    Article  PubMed  PubMed Central  Google Scholar 

  17. Algin O, Turkbey B (2013) Intrathecal gadolinium-enhanced MR cisternography: a comprehensive review. Am J Neuroradiol 34(1):14–22

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Paulson D, Hwang SW, Whitehead WE et al (2012) Aqueductal developmental venous anomaly as an unusual cause of congenital hydrocephalus: a case report and review of the literature. J Med Case Rep 6:7

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ucar M, Tokgoz N, Koc AM et al (2015) Assessment of 3D T2-weighted high-sampling-efficiency technique (SPACE) for detection of cerebellar tonsillar motion: new useful sign for Chiari I malformation. Clin Imaging 39(1):42–50

    Article  PubMed  Google Scholar 

  20. Fushimi Y, Miki Y, Ueba T et al (2003) Liliequist membrane: three-dimensional constructive interference in steady state MR imaging. Radiology 229(2):360–365

    Article  PubMed  Google Scholar 

  21. Mortazavi MM, Rizq F, Harmon O et al (2015) Anatomical variations and neurosurgical significance of Liliequist’s membrane. Childs Nerv Syst 31(1):15–28

    Article  PubMed  Google Scholar 

  22. Algin O, Hakyemez B, Parlak M (2011) Phase-contrast MRI and 3D-CISS versus contrast-enhanced MR cisternography for the detection of spontaneous third ventriculostomy. J Neuroradiol 38(2):98–104

    Article  PubMed  CAS  Google Scholar 

  23. Etus V, Solakoglu S, Ceylan S (2011) Ultrastructural changes in the Liliequist membrane in the hydrocephalic process and its implications for the endoscopic third ventriculostomy procedure. Turk Neurosurg 21(3):359–366

    PubMed  Google Scholar 

  24. Algin O, Kılın M, Ozmen E, Ocakoglu G (2016) Assessment of Liliequist membrane by 3D-SPACE technique at 3 T. Neuroradiology 58(7):637–647

    Article  PubMed  Google Scholar 

  25. Cakır E, Arslan E (2014) CSF hydrothorax as a late complication of ventriculoatrial shunt catheter displacement. Balkan Med J 31(4):363–365

    Article  PubMed  PubMed Central  Google Scholar 

  26. Algin O, Hakyemez B, Taskapilioglu O et al (2009) Morphologic features and flow void phenomenon in normal pressure hydrocephalus and other dementias: are they really significant? Acad Radiol 16(11):1373–1380

    Article  PubMed  Google Scholar 

  27. Algin O, Hakyemez B, Parlak M (2010) The efficiency of PC-MRI in diagnosis of normal pressure hydrocephalus and prediction of shunt response. Acad Radiol 17(2):181–187

    Article  PubMed  Google Scholar 

  28. Ringstad G, Emblem KE, Geier O, Alperin N, Eide PK (2015) Aqueductal stroke volume: comparisons with intracranial pressure scores in idiopathic normal pressure hydrocephalus. Am J Neuroradiol 36:1623–1630

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Bradley WG Jr (2015) CSF flow in the brain in the context of normal pressure hydrocephalus. Am J Neuroradiol 36:831–838

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ishii K, Kanda T, Harada A et al (2008) Clinical impact of the callosal angle in the diagnosis of idiopathic normal pressure hydrocephalus. Eur Radiol 18:2678–2683

    Article  PubMed  Google Scholar 

  31. Segev Y, Metser U, Beni-Adani L et al (2001) Morphometric study of the midsagittal MR imaging plane in cases of hydrocephalus and atrophy and in normal brains. Am J Neuroradiol 22:1674–1679

    PubMed  CAS  PubMed Central  Google Scholar 

Download references


The author would like to thank to engineer Ali Caglar Özen (University Medical Center Freiburg) and pediatric radiologist Evrim Ozmen (Istanbul University) for their excellent contributions. We also gratefully acknowledge Dr. Gülbiz Kartal (radiologist) and Musa Kurnaz (MR technician) for their contributions, and all UMRAM staff for providing technical support.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Oktay Algin.

Ethics declarations

Conflict of interest

The author declares that he have no conflict of interest.



Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Algin, O. Evaluation of hydrocephalus patients with 3D-SPACE technique using variant FA mode at 3T. Acta Neurol Belg 118, 169–178 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Hydrocephalus
  • CSF
  • 3D-SPACE
  • Third ventriculostomy
  • Ventriculo-peritoneal shunt
  • Variant flip-angle
  • MR
  • 3T