Skip to main content

Topographic distribution of brain iron deposition and small cerebrovascular lesions in amyotrophic lateral sclerosis and in frontotemporal lobar degeneration: a post-mortem 7.0-tesla magnetic resonance imaging study with neuropathological correlates

Abstract

Amyotrophic lateral sclerosis (ALS) is associated with frontotemporal lobar degeneration (FTLD) in 15% of the cases. A neuropathological continuity between ALS and FTLD-TDP is suspected. The present post-mortem 7.0-tesla magnetic resonance imaging (MRI) study compares the topographic distribution of iron (Fe) deposition and the incidence of small cerebrovascular lesions in ALS and in FTLD brains. Seventy-eight post-mortem brains underwent 7.0-tesla MRI. The patients consisted of 12 with ALS, 38 with FTLD, and 28 controls. Three ALS brains had minor FTLD features. Three coronal sections of a cerebral hemisphere were submitted to T2 and T2* MRI sequences. The amount of Fe deposition in the deep brain structures and the number of small cerebrovascular lesions was determined in ALS and the subtypes of FTLD compared to control brains, with neuropathological correlates. A significant increase of Fe deposition was observed in the claustrum, caudate nucleus, globus pallidus, thalamus, and subthalamic nucleus of the FTLD-FUS and FTLD-TDP groups, while in the ALS one, the Fe increase was only observed in the caudate and the subthalamic nuclei. White matter changes were only significantly more severe in the FTLD compared to those in ALS and in controls brains. Cortical micro-bleeds were increased in the frontal and temporal lobes of FTLD as well as of ALS brains compared to controls. Cortical micro-infarcts were, on the other hand, more frequent in the control compared to the ALS and FTLD groups. The present study supports the assumption of a neuropathological continuity between ALS and FTLD and illustrates the favourable vascular risk profile in these diseases.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Liscic RM, Grinberg LT, Zidar J, Gitcho MA, Cairns NJ (2008) ALS and FTLD: two faces of TDP-43 proteinopathy. Eur J Neurol 15:772–780

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Sudedja NA, van der Schouw YT, Fischer K, Sizoo EM, Huisman MH, Veldink JH et al (2011) Beneficial vascular risk profile is associated with amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 8:638–642

    Article  Google Scholar 

  3. Kioumourtzoglou MA, Rotem RS, Seals RM, Gredal O, Hansen J, Weisskopf MG (2015) Diabetes, obesity, and diagnosis of amyotrophic lateral sclerosis: a population based study. JAMA Neurol 72:905–911

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sieben A, Van Langenhove T, Engelborghs S, Martin JJ, Boon P, Cras P et al (2012) The genetic and neuropathology of frontotemporal lobar degeneration. Acta Neuropathol 124:353–372

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. De Reuck J, Deramecourt V, Cordonnier C, Auger F, Durieux N, Bordet R et al (2012) Detection of microbleeds in post-mortem brains of patients with frontotemporal lobar degeneration: a 7.0-tesla magnetic resonance imaging study with neuropathological correlates. Eur J Neurol 19:1355–1360

    Article  PubMed  Google Scholar 

  6. De Reuck J, Auger F, Durieux N, Deramecourt V, Maurage CA, Lebert F et al (2016) The topography of cortical microbleeds in frontotemporal lobar degeneration: a post-mortem 7.0-tesla magnetic resonance study. Folia Neuropathol 54:149–155

    Article  PubMed  Google Scholar 

  7. Ding B, Chen KM, Ling HW, Sun F, Li X, Wan T et al (2009) Correlation of iron in the hippocampus with MMSE in patients with Alzheimer’s disease. J Magn Reson Imaging 29:793–798

    Article  PubMed  Google Scholar 

  8. Del Valdes Hernandez M, Ritchie S, Glatz A, Allerhand M, Munos Maniega S, Gow AJ et al (2015) Brain iron deposits and lifespan cognitive ability. Age 37(5):100

    Article  Google Scholar 

  9. De Reuck J, Deramecourt V, Auger F, Durieux N, Cordonnier C, Devos D et al (2014) Iron deposits in post-mortem brains of patients with neurodegenerative and cerebrovascular diseases: a semi-quantitative 7.0 T magnetic resonance imaging study. Eur J Neurol 21:1026–1031

    Article  PubMed  Google Scholar 

  10. Veyrat-Durebex C, Corcia P, Mucha A, Benzimra S, Mallet C, Gendrot C et al (2014) Iron metabolism disturbance in a French cohort of ALS patients. Biomed Res Int. doi:10.1155/2014/485723

    PubMed  PubMed Central  Google Scholar 

  11. Kasarskis EJ, Tandon L, Lovell MA, Ehmann WD (1995) Aluminium, calcium, and iron in the spinal cord of patients with sporadic amyotrophic lateral sclerosis using laser microprobe mass spectroscopy: a preliminary study. J Neurol Sci 130:203–208

    CAS  Article  PubMed  Google Scholar 

  12. Igjatovic A, Stevic Z, Lavrnic S, Dakovic M, Bacic G (2013) Brain iron MRI: a biomarker for amyotrophic lateral sclerosis. J Magn Reson Imaging 38:1472–1479

    Article  Google Scholar 

  13. Costagli M, Donatelli G, Biagi L, Caldarazzo Lenco E, Siciliano Tosetti M et al (2016) Magnetic susceptibility in the deep layers of the primary motor cortex in amyotrophic lateral sclerosis. Neuroimage Clin 12:965–969

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Hecht MJ, Fellner C, Schmid A, Neundorfer B, Fellner FA (2005) Cortical T2 signal shortening in amyotrophic lateral sclerosis is not due to iron deposits. Neuroradiology 47:805–808

    CAS  Article  PubMed  Google Scholar 

  15. Cruz-Sanchez FF, Moral A, de Belleroche J, Rossi ML (1993) Amyotrophic lateral sclerosis brain banking: a proposal to standardize protocols and neuropathological diagnostic criteria. J Neural Transm 39(Suppl 2):215–222

    CAS  Google Scholar 

  16. Cairns NJ, Bigio EH, Mackenzie IR, Neumann M, Lee VM, Hatanpaa KJ et al (2007) Consortium for Frontotemporal Lobar Degeneration. Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the Consortium for Frontotemporal Lobar Degeneration. Acta Neuropathol 114:5–22

    Article  PubMed  PubMed Central  Google Scholar 

  17. De Reuck J, Deramecourt V, Cordonnier C, Leys D, Pasquier F, Maurage C-A (2011) Prevalence of small cerebral bleeds in patients with a neurodegenerative dementia: a neuropathological study. J Neurol Sci 300:63–66

    Article  PubMed  Google Scholar 

  18. De Reuck J, Auger F, Cordonnier C, Deramecourt V, Durieux N, Pasquier F et al (2011) Comparison of 7.0-Tesla T2*-magnetic resonance imaging of cerebral bleeds in post-mortem brain sections of Alzheimer patients with their neuropathological correlates. Cerebrovasc Dis 31:511–517

    Article  PubMed  Google Scholar 

  19. Meadowcroft MD, Connor JR, Smith MB, Yang QX (2009) MRI and histological analysis of bête-amyloid plaques in both human Alzheimer’s disease and APP/PS1 transgenetic mice. J Magn Reson Imaging 29:997–1007

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gupta D, Saini J, Kesavadas C, Sarma S, Kishore A (2010) Utility of susceptibility-weighted MRI in differentiating Parkinson’s disease and atypical parkinsonism. Neuroradiology 52:1087–1094

    Article  PubMed  Google Scholar 

  21. Hopes L, Grolez G, Moreau C, Lopes R, Ryckewaert G, Carnière N et al (2016) Magnetic resonance imaging features of the nigrostriatal system: biomarkers of Parkinson’s disease stages? PLoS ONE 16:e0147947

    Article  Google Scholar 

  22. Ehmann WD, Alauddin M, Hossain TI, Markesbery WR (1984) Brain trace elements in Pick’s disease. Ann Neurol 15:102–104

    CAS  Article  PubMed  Google Scholar 

  23. Santillo AF, Skoglund L, Lindau M, Eeg-Olofsson KE, Tovi M, Engler H et al (2009) Frontotemporal dementia-amyotrophic lateral sclerosis complex is simulated by neurodegeneration with brain iron accumulation. Alzheimer Dis Assoc Disord 23:298–300

    Article  PubMed  Google Scholar 

  24. Jeong SY, Rathore KI, Schulz K, Ponka P, Arosio P, Davis S (2009) Dysregulation of iron homeostasis in the CNS contributes to disease progression in a mouse model of amyotrophic lateral sclerosis. J Neurosci 29:610–619

    CAS  Article  PubMed  Google Scholar 

  25. Prpar Mihevc S, Darovic S, Kovanda A, Bajc Cesnik A, Zupunski V, Rogeli B (2017) Nuclear trafficking in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Brain 140:13–26

    Article  PubMed  Google Scholar 

  26. Gazzina S, Premi E, Zanella I, Biasiotto G, Archetti S, Cosseddu M et al (2016) Iron in frontotemporal lobar degeneration A new subcortical pathological pathway? Neurodegener Dis 16:172–178

    CAS  Article  PubMed  Google Scholar 

  27. Grolez G, Moreau C, Daniel-Brunaud V, Delmaire C, Lopes R, Pradat PF et al (2016) The value of magnetic resonance imaging as a biomarker of amyotrophic lateral sclerosis: a systematic review. BMC Neurol 16:155. doi:10.1186/s12883-016-0672-6

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Agosta F, Galantucci S, Magnani G, Marcone A, Martinelli D, Antonietta Volontè M et al (2015) MRI signatures of the frontotemporal lobar degeneration continuum. Hum Brain Mapp 36:2602–2614

    Article  PubMed  Google Scholar 

  29. Moreau C, Brunaud-Daniel V, Dallongeville J, Duhamel A, Laurier- Grymonprez L, De Reuck J et al (2011) Modifying effect of arterial hypertension on amyotrophic lateral sclerosis. Amyotroph Lateral Scler 13:194–202

    Article  PubMed  Google Scholar 

  30. Riku Y, Watanabe H, Yoshida M, Tatsumi S, Mimuro M, Iwasaki M et al (2014) Lower motor neuron involvement in TAR DNA-binding protein of 43 kDa-related frontotemporal lobar degeneration and amyotrophic lateral sclerosis. JAMA Neurol 71:172–179

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques De Reuck.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Ethical approval

The brain tissue samples were acquired from the Lille Neuro-Bank of the Lille University, federated to the “Centre des Resources Biologiques” that acted as an institutional review board.

Informed consent

Previously obtained informed consent of the patients or from the nearest family allowed an autopsy for diagnostic and scientific purposes.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

De Reuck, J., Devos, D., Moreau, C. et al. Topographic distribution of brain iron deposition and small cerebrovascular lesions in amyotrophic lateral sclerosis and in frontotemporal lobar degeneration: a post-mortem 7.0-tesla magnetic resonance imaging study with neuropathological correlates. Acta Neurol Belg 117, 873–878 (2017). https://doi.org/10.1007/s13760-017-0832-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13760-017-0832-5

Keywords

  • Amyotrophic lateral sclerosis
  • Frontotemporal lobar degeneration
  • Post-mortem 7-tesla MRI
  • Iron deposition
  • White matter changes
  • Cortical micro-bleeds
  • Cortical micro-infarcts