Skip to main content
Log in

In the grey zone between epilepsy and schizophrenia: alterations in group II metabotropic glutamate receptors

  • Research Article
  • Published:
Acta Neurologica Belgica Aims and scope Submit manuscript

Abstract

Glutamate is the major excitatory neurotransmitter in the brain. The glutamate system plays an important role in the formation of synapses during brain development and synaptic plasticity. Dysfunctions in glutamate regulation may lead to hyperexcitatory neuronal networks and neurotoxicity. Glutamate excess is possibly of great importance in the pathophysiology of several neurological and psychiatric disorders such as epilepsy and schizophrenia. Interestingly, cross talk between these disorders has been well documented: psychiatric comorbidities are frequent in epilepsy and temporal lobe epilepsy is one of the highest risk factors for developing psychosis. Therefore, dysfunctions in glutamatergic neurotransmission might constitute a common pathological mechanism. A major negative feedback system is regulated by the presynaptic group II metabotropic glutamate (mGlu) receptors including mGlu2/3 receptors. These receptors are predominantly localised extrasynaptically in basal ganglia and limbic structures. Hence, mGlu2/3 receptors are an interesting target for the treatment of disorders like epilepsy and schizophrenia. A dysfunction in the glutamate system may be associated with alterations in mGlu2/3 receptor expression. In this review, we describe the localization of mGlu2/3 receptors in the healthy brain of mice, rats and humans. Secondly, changes in mGlu2/3 receptor density of the brain regions affected in epilepsy and schizophrenia are summarised. Increased mGlu2/3 receptor density might represent a compensatory mechanism of the brain to regulate elevated glutamate levels, while reduced mGlu2/3 receptor density in some brain regions may further contribute to the aberrant hyperexcitability. Further research considering the mGlu2/3 receptor can contribute significantly to the understanding of the etiological and therapeutic role of group II mGlu receptor in epilepsy, epilepsy with psychosis and schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3 

Similar content being viewed by others

References

  1. Alexander GM, Godwin DW (2006) Metabotropic glutamate receptors as a strategic target for the treatment of epilepsy. Epilepsy Res 71:1–22

    Article  CAS  PubMed  Google Scholar 

  2. Aronica E, van Vliet EA, Mayboroda OA, Troost D, da Silva FH, Gorter JA (2000) Upregulation of metabotropic glutamate receptor subtype mGluR3 and mGluR5 in reactive astrocytes in a rat model of mesial temporal lobe epilepsy. Eur J Neurosci 12:2333–2344

    Article  CAS  PubMed  Google Scholar 

  3. Aronica EM, Gorter JA, Paupard MC, Grooms SY, Bennett MVL, Zukin RS (1997) Status epilepticus-induced alterations in metabotropic glutamate receptor expression in young and adult rats. J Neurosci 17:8588–8595

    CAS  PubMed  Google Scholar 

  4. Attwell PJ, Singh Kent N, Jane DE, Croucher MJ, Bradford HF (1998) Anticonvulsant and glutamate release-inhibiting properties of the highly potent metabotropic glutamate receptor agonist (2S,2′R,3′R)-2-(2′,3′-dicarboxycyclopropyl)glycine (DCG-IV). Brain Res 805:138–143

    Article  CAS  PubMed  Google Scholar 

  5. Bialer M, White HS (2010) Key factors in the discovery and development of new antiepileptic drugs. Nat Rev Drug Discov 9:68–82

    Article  CAS  PubMed  Google Scholar 

  6. Blumcke I, Thom M, Aronica E, Armstrong DD, Bartolomei F, Bernasconi A, Bernasconi N, Bien CG, Cendes F, Coras R, Cross JH, Jacques TS, Kahane P, Mathern GW, Miyata H, Moshe SL, Oz B, Ozkara C, Perucca E, Sisodiya S, Wiebe S, Spreafico R (2013) International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: a Task Force report from the ILAE Commission on Diagnostic Methods. Epilepsia 54:1315–1329

    Article  PubMed  Google Scholar 

  7. Bromet EJ, Fennig S (1999) Epidemiology and natural history of schizophrenia. Biol Psychiatry 46:871–881

    Article  CAS  PubMed  Google Scholar 

  8. Brown AS (2011) Exposure to prenatal infection and risk of schizophrenia. Front Psychiatry 2:63

    Article  PubMed Central  PubMed  Google Scholar 

  9. Cartmell J, Schoepp DD (2000) Regulation of neurotransmitter Release by metabotropic glutamate receptors. J Neurochem 75:889–907

    Article  CAS  PubMed  Google Scholar 

  10. Cascella NG, S DJ, Sawa A (2009) Schizophrenia and epilepsy: is there a shared susceptibility? Neurosci Res 63(4):227–235

    Article  PubMed Central  PubMed  Google Scholar 

  11. Chaki S (2010) Group II metabotropic glutamate receptor agonists as a potential drug for schizophrenia. Eur J Pharmacol 639:59–66

    Article  CAS  PubMed  Google Scholar 

  12. Chang YT, Chen PC, Tsai IJ, Sung FC, Chin ZN, Kuo HT, Tsai CH, Chou IC (2011) Bidirectional relation between schizophrenia and epilepsy: a population-based retrospective cohort study. Epilepsia 52:2036–2042

    Article  PubMed  Google Scholar 

  13. Chen Q, He G, Wu S, Xu Y, Feng G, Li Y, Wang L, He L (2005) A case–control study of the relationship between the metabotropic glutamate receptor 3 gene and schizophrenia in the Chinese population. Schizophr Res 73:21–26

    Article  PubMed  Google Scholar 

  14. Cherlyn SY, Woon PS, Liu JJ, Ong WY, Tsai GC, Sim K (2010) Genetic association studies of glutamate, GABA and related genes in schizophrenia and bipolar disorder: a decade of advance. Neurosci Biobehav Rev 34:958–977

    Article  CAS  PubMed  Google Scholar 

  15. Conn PJ, Jones CK (2009) Promise of mGluR2/3 activators in psychiatry. Neuropsychopharmacology 34:248–249

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Conn PJ, Lindsley CW, Jones CK (2009) Activation of metabotropic glutamate receptors as a novel approach for the treatment of schizophrenia. Trends Pharmacol Sci 30:25–31

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Corti C, Crepaldi L, Mion S, Roth AL, Xuereb JH, Ferraguti F (2007) Altered dimerization of metabotropic glutamate receptor 3 in schizophrenia. Biol Psychiatry 62:747–755

    Article  CAS  PubMed  Google Scholar 

  18. Crook JM, Akil M, Law BCW, Hyde TM, Kleinman JE (2002) Comparative analysis of group II metabotropic glutamate receptor immunoreactivity in Brodmann’s area 46 of the dorsolateral prefrontal cortex from patients with schizophrenia and normal subjects. Molecular Psychiatry 7:157–164

    Article  CAS  PubMed  Google Scholar 

  19. Deakin J, Lennox BR, Zandi MS (2014) Antibodies to the N-Methyl-D-aspartate receptor and other synaptic proteins in psychosis. Biol Psychiatry 74(4):284–291

    Article  Google Scholar 

  20. Dedeurwaerdere S, Callaghan PD, Pham T, Rahardjo GL, Amhaoul H, Berghofer P, Quinlivan M, Mattner F, Loc’h C, Katsifis A, Gregoire MC (2012) PET imaging of brain inflammation during early epileptogenesis in a rat model of temporal lobe epilepsy. EJNMMI Res 2:60

    Article  PubMed Central  PubMed  Google Scholar 

  21. Dedeurwaerdere S, Fang K, Chow M, Shen YT, Noordman I, van Raay L, Faggian N, Porritt M, Egan GF, O’Brien TJ (2013) Manganese-enhanced MRI reflects seizure outcome in a model for mesial temporal lobe epilepsy. Neuroimage 68:30–38

    Article  CAS  PubMed  Google Scholar 

  22. Dedeurwaerdere S, Wintmolders C, Straetemans R, Pemberton D, Langlois X (2011) Memantine-induced brain activation as a model for the rapid screening of potential novel antipsychotic compounds: exemplified by activity of an mGlu2/3 receptor agonist. Psychopharmacology 214:505–514

    Article  CAS  PubMed  Google Scholar 

  23. Duncan GE, Leipzig JN, Mailman RB, Lieberman JA (1998) Differential effects of clozapine and haloperidol on ketamine-induced brain metabolic activation. Brain Res 812:65–75

    Article  CAS  PubMed  Google Scholar 

  24. During MJ, Spencer DD (1993) Extracellular hippocampal glutamate and spontaneous seizure in the conscious human brain. Lancet 341:1607–1610

    Article  CAS  PubMed  Google Scholar 

  25. Egan MF, Straub RE, Goldberg TE, Yakub I, Callicott JH, Hariri AR, Mattay VS, Bertolino A, Hyde TM, Shannon-Weickert C, Akil M, Crook J, Vakkalanka RK, Balkissoon R, Gibbs RA, Kleinman JE, Weinberger DR (2004) Variation in GRM3 affects cognition, prefrontal glutamate, and risk for schizophrenia. Proc Natl Acad Sci USA 101:12604–12609

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Ermolinsky B, Pacheco Otalora LF, Arshadmansab MF, Zarei MM, Garrido-Sanabria ER (2008) Differential changes in mGlu2 and mGlu3 gene expression following pilocarpine-induced status epilepticus: a comparative real-time PCR analysis. Brain Res 1226:173–180

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Fell MJ, Katner JS, Johnson BG, Khilevich A, Schkeryantz JM, Perry KW, Svensson KA (2010) Activation of metabotropic glutamate (mGlu)2 receptors suppresses histamine release in limbic brain regions following acute ketamine challenge. Neuropharmacology 58:632–639

    Article  CAS  PubMed  Google Scholar 

  28. Fell MJ, McKinzie DL, Monn JA, Svensson KA (2012) Group II metabotropic glutamate receptor agonists and positive allosteric modulators as novel treatments for schizophrenia. Neuropharmacology 62:1473–1483

    Article  CAS  PubMed  Google Scholar 

  29. Flor-Henry P (1969) Psychosis and temporal lobe epilepsy a controlled investigation. Epilepsia 10:363–395

    Article  CAS  PubMed  Google Scholar 

  30. Frank E, Newell KA, Huang XF (2011) Density of metabotropic glutamate receptors 2 and 3 (mGluR2/3) in the dorsolateral prefrontal cortex does not differ with schizophrenia diagnosis but decreases with age. Schizophr Res 128:56–60

    Article  PubMed  Google Scholar 

  31. Friedman JI, Vrijenhoek T, Markx S, Janssen IM, van der Vliet WA, Faas BH, Knoers NV, Cahn W, Kahn RS, Edelmann L, Davis KL, Silverman JM, Brunner HG, van Kessel AG, Wijmenga C, Ophoff RA, Veltman JA (2008) CNTNAP2 gene dosage variation is associated with schizophrenia and epilepsy. Mol Psychiatry 13:261–266

    Article  CAS  PubMed  Google Scholar 

  32. Fujii Y, Shibata H, Kikuta R, Makino C, Tani A, Hirata N, Shibata A, Ninomiya H, Tashiro N, Fukumaki Y (2003) Positive associations of polymorphisms in the metabotropic glutamate receptor type 3 gene (GRM3) with schizophrenia. Psychiatr Genet 13:71–76

    PubMed  Google Scholar 

  33. Fukata Y, Adesnik H, Iwanaga T, Bredt DS, Nicoll RA, Fukata M (2006) Epilepsy-related ligand/receptor complex LGI1 and ADAM22 regulate synaptic transmission. Science 313:1792–1795

    Article  CAS  PubMed  Google Scholar 

  34. Garrido-Sanabria ER, Otalora LF, Arshadmansab MF, Herrera B, Francisco S, Ermolinsky BS (2008) Impaired expression and function of group II metabotropic glutamate receptors in pilocarpine-treated chronically epileptic rats. Brain Res 1240:165–176

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Ghose S, Crook JM, Bartus CL, Sherman TG, Herman MM, Hyde TM, Kleinman JE, Akil M (2008) Metabotropic glutamate receptor 2 and 3 gene expression in the human prefrontal cortex and mesencephalon in schizophrenia. Int J Neurosci 118:1609–1627

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Ghose S, Gleason KA, Potts BW, Kelly L-A, Tamminga CA (2009) Differential expression of metabotropic glutamate receptors 2 and 3 in schizophrenia: a mechanism for antipsychotic drug action? Am J Psychiatry 166:812–820

    Article  PubMed Central  PubMed  Google Scholar 

  37. Gibbs FA (1951) Ictal and non-ictal psychiatric disorders in temporal lobe epilepsy. J Nerv Ment Dis 113:522–528

    CAS  PubMed  Google Scholar 

  38. Gonzalez-Maeso J, Ang RL, Yuen T, Chan P, Weisstaub NV, Lopez-Gimenez JF, Zhou M, Okawa Y, Callado LF, Milligan G, Gingrich JA, Filizola M, Meana JJ, Sealfon SC (2008) Identification of a serotonin/glutamate receptor complex implicated in psychosis. Nature 452:93–97

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Gu G, Lorrain DS, Wei H, Cole RL, Zhang X, Daggett LP, Schaffhauser HJ, Bristow LJ, Lechner SM (2008) Distribution of metabotropic glutamate 2 and 3 receptors in the rat forebrain: implication in emotional responses and central disinhibition. Brain Res 1197:47–62

    Article  CAS  PubMed  Google Scholar 

  40. Gupta DS, McCullumsmith RE, Beneyto M, Haroutunian V, Davis KL, Meador-Woodruff JH (2005) Metabotropic glutamate receptor protein expression in the prefrontal cortex and striatum in schizophrenia. Synapse 57:123–131

    Article  CAS  PubMed  Google Scholar 

  41. Holloway TM, Moreno JL, Umali A, Rayannavar V, Hodes GE, Russo SJ, González-Maeso J (2013) Prenatal stress induces schizophrenia-Like alterations of serotonin 2A and metabotropic glutamate 2 receptors in the adult offspring: role of maternal immune system. J Neurosci 33:1088–1098

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Holmes GL (2002) Seizure-induced neuronal injury. Neurology 59:S3–S6

    Article  PubMed  Google Scholar 

  43. Hyde TM, Weinberger DR (1997) Seizures and schizophrenia. Schizophr Bull 23:611–622

    Article  CAS  PubMed  Google Scholar 

  44. Jentsch JD, Roth RH (1999) The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 20:201–225

    Article  CAS  PubMed  Google Scholar 

  45. Joo A, Shibata H, Ninomiya H, Kawasaki H, Tashiro N, Fukumaki Y (2001) Structure and polymorphisms of the human metabotropic glutamate receptor type 2 gene (GRM2): analysis of association with schizophrenia. Mol Psychiatry 6:186–192

    Article  CAS  PubMed  Google Scholar 

  46. Kandratavicius L, Lopes-Aguiar C, Bueno-Júnior LS, Romcy-Pereira RN, Hallak JEC, Leite JP (2012) Psychiatric comorbidities in temporal lobe epilepsy: possible relationships between psychotic disorders and involvement of limbic circuits. Revista Brasileira de Psiquiatria 34:454–466

    Article  PubMed  Google Scholar 

  47. Kent J, Anghelescu IG, Kezic I, Daly E, Ceusters M, De Smedt H, Van Neuten L, De Boer P (2013) Safety, tolerability and potential therapeutic efficacy of a novel glutamate modulator as adjunctive treatment in patients with schizophrenia. 166th Annual meeting of the American Psychiatry Association San Francisco

  48. Kinon BJ, Zhang L, Millen BA, Osuntokun OO, Williams JE, Kollack-Walker S, Jackson K, Kryzhanovskaya L, Jarkova N; HBBI Study Group (2011) A multicenter, inpatient, phase 2, double-blind, placebo-controlled dose-ranging study of LY2140023 monohydrate in patients with DSM-IV schizophrenia. J Clin Psychopharmacol 31(3):349–355. doi:10.1097/JCP.0b013e318218dcd5

    Article  CAS  PubMed  Google Scholar 

  49. Kircher TTJ, Thienel R (2005) Functional brain imaging of symptoms and cognition in schizophrenia. In: Steven L (ed) Progress in brain research. Elsevier, Amsterdam, pp 299–604

    Google Scholar 

  50. Konradi C, Heckers S (2003) Molecular aspects of glutamate dysregulation: implications for schizophrenia and its treatment. Pharmacol Ther 97:153–179

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Krivoy A, Fischel T, Weizman A (2008) The possible involvement of metabotropic glutamate receptors in schizophrenia. Eur Neuropsychopharmacol 18:395–405

    Article  CAS  PubMed  Google Scholar 

  52. Kurita M, Holloway T, Garcia-Bea A, Kozlenkov A, Friedman AK, Moreno JL, Heshmati M, Golden SA, Kennedy PJ, Takahashi N, Dietz DM, Mocci G, Gabilondo AM, Hanks J, Umali A, Callado LF, Gallitano AL, Neve RL, Shen L, Buxbaum JD, Han MH, Nestler EJ, Meana JJ, Russo SJ, Gonzalez-Maeso J (2012) HDAC2 regulates atypical antipsychotic responses through the modulation of mGlu2 promoter activity. Nat Neurosci 15:1245–1254

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Lavreysen H (2013) Discovery and early clinical development of novel mGlu2 receptor PAMs. American college of neuropsychopharmacology–52nd annual meeting, Florida

  54. Lavreysen H, Langlois X, Ahnaou A, Drinkenburg W, te Riele P, Biesmans I, Van der Linden I, Peeters L, Megens A, Wintmolders C, Cid JM, Trabanco AA, Andres JI, Dautzenberg FM, Lutjens R, Macdonald G, Atack JR (2013) Pharmacological characterization of JNJ-40068782, a new potent, selective, and systemically active positive allosteric modulator of the mGlu2 receptor and its radioligand [3H]JNJ-40068782. J Pharmacol Exp Ther 346:514–527

    Article  CAS  PubMed  Google Scholar 

  55. Litman RE, Smith M, Doherty J, Cross A, Raines S, Zukin S (2013) AZD8529, A Positive Allosteric Modulator at the MGLUR2 Receptor, does Not Improve Symptoms in Schizophrenia: a proof of principle study. NCDEU, Florida

    Google Scholar 

  56. Marsman A, van den Heuvel MP, Klomp DW, Kahn RS, Luijten PR, Hulshoff Pol HE (2013) Glutamate in schizophrenia: a focused review and meta-analysis of (1)H-MRS studies. Schizophr Bull 39:120–129

    Article  PubMed Central  PubMed  Google Scholar 

  57. Matosin N, Fernandez-Enright F, Frank E, Deng C, Wong J, Huang XF, Newell KA (2014) Metabotropic glutamate receptor mGluR2/3 and mGluR5 binding in the anterior cingulate cortex in psychotic and nonpsychotic depression, bipolar disorder and schizophrenia: implications for novel mGluR-based therapeutics. J Psychiatry Neurosci 39:130242

    Article  Google Scholar 

  58. Meldrum BS (2000) Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J Nutr 130:1007

    Google Scholar 

  59. Meyer U, Feldon J, Fatemi SH (2009) In-vivo rodent models for the experimental investigation of prenatal immune activation effects in neurodevelopmental brain disorders. Neurosci Biobehav Rev 33:1061–1079

    Article  CAS  PubMed  Google Scholar 

  60. Miyamoto M, Ishida M, Shinozaki H (1997) Anticonvulsive and neuroprotective actions of a potent agonist (DCG-IV) for group II metabotropic glutamate receptors against intraventricular kainate in the rat. Neuroscience 77:131–140

    Article  CAS  PubMed  Google Scholar 

  61. Moghaddam B (2004) Targeting metabotropic glutamate receptors for treatment of the cognitive symptoms of schizophrenia. Psychopharmacology 174:39–44

    Article  CAS  PubMed  Google Scholar 

  62. Moldrich RX, Chapman AG, De Sarro G, Meldrum BS (2003) Glutamate metabotropic receptors as targets for drug therapy in epilepsy. Eur J Pharmacol 476:3–16

    Article  CAS  PubMed  Google Scholar 

  63. Moreno JL, Sealfon S, González-Maeso J (2009) Group II metabotropic glutamate receptors and schizophrenia. Cell Mol Life Sci 66:3777–3785

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Moreno JL, Kurtia M, Holloway T, López J, Cadagan R, Martínez-Sobrido L, García-Sastre A, González-Maeso J (2011) Maternal influenza viral infection causes schizophrenia-like alterations of 5-HT2A and mGlu2 receptors in the adult offspring. J Neurosci 31:1863–1872

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Mudo G, Trovato-Salinaro A, Caniglia G, Cheng Q, Condorelli DF (2007) Cellular localization of mGluR3 and mGluR5 mRNAs in normal and injured rat brain. Brain Res 1149:1–13

    Article  CAS  PubMed  Google Scholar 

  66. Muguruza C, Miranda-Azpiazu P, Diez-Alarcia R, Morentin B, Gonzalez-Maeso J, Callado LF, Meana JJ (2014) Evaluation of 5-HT and mGlu receptors in postmortem prefrontal cortex of subjects with major depressive disorder: effect of antidepressant treatment. Neuropharmacology 86:311–318

    Article  CAS  PubMed  Google Scholar 

  67. Nadkarni S, Arnedo V, Devinsky O (2007) Psychosis in epilepsy patients. Epilepsia 48(Suppl 9):17–19

    Article  PubMed  Google Scholar 

  68. Niswender CM, Conn PJ (2010) Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol 50:295–322

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Noetzel MJ, Jones CK, Conn PJ (2012) Emerging approaches for treatment of schizophrenia: modulation of glutamatergic signaling. Discov Med 14:335–343

    PubMed Central  PubMed  Google Scholar 

  70. Ohishi H, Neki A, Mizuno N (1998) Distribution of a metabotropic glutamate receptor, mGluR2, in the central nervous system of the rat and mouse: an immunohistochemical study with a monoclonal antibody. Neurosci Res 30:65–82

    Article  CAS  PubMed  Google Scholar 

  71. Ohishi H, Shigemoto R, Nakanishi S, Mizuno N (1993) Distribution of the messenger RNA for a metabotropic glutamate receptor, mGluR2, in the central nervous system of the rat. Neuroscience 53:1009–1018

    Article  CAS  PubMed  Google Scholar 

  72. Pacheco Otalora LF, Couoh J, Shigamoto R, Zarei MM, Sanabria ERG (2006) Abnormal mGluR2/3 expression in the perforant path termination zones and mossy fibers of chronically epileptic rats. Brain Res 1098:170–185

    Article  CAS  PubMed  Google Scholar 

  73. Patil ST, Zhang L, Martenyi F, Lowe SL, Jackson KA, Andreev BV, Avedisova AS, Bardenstein LM, Gurovich IY, Morozova MA, Mosolov SN, Neznanov NG, Reznik AM, Smulevich AB, Tochilov VA, Johnson BG, Monn JA, Schoepp DD (2007) Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: a randomized Phase 2 clinical trial. Nat Med 13(9):1102–1107

    Article  CAS  PubMed  Google Scholar 

  74. Platt SR (2007) The role of glutamate in central nervous system health and disease—a review. Vet J 173:278–286

    Article  CAS  PubMed  Google Scholar 

  75. Qin P, Xu H, Laursen TM, Vestergaard M, Mortensen PB (2005) Risk for schizophrenia and schizophrenia-like psychosis among patients with epilepsy: population based cohort study. BMJ 331:23

    Article  PubMed Central  PubMed  Google Scholar 

  76. Richardson-Burns SM, Haroutunian V, Davis KL, Watson SJ, Meador-Woodruff JH (2000) Metabotropic glutamate receptor mRNA expression in the schizophrenic thalamus. Biol Psychiatry 47:22–28

    Article  CAS  PubMed  Google Scholar 

  77. Riedel G, Platt B, Micheau J (2003) Glutamate receptor function in learning and memory. Behav Brain Res 140:1–47

    Article  CAS  PubMed  Google Scholar 

  78. Roberts GW, Done DJ, Bruton C, Crow TJ (1990) A “mock up” of schizophrenia: temporal lobe epilepsy and schizophrenia-like psychosis. Biol Psychiatry 28:127–143

    Article  CAS  PubMed  Google Scholar 

  79. Rohde J, Kirschstein T, Wilkars W, Muller L, Tokay T, Porath K, Bender RA, Kohling R (2012) Upregulation of presynaptic mGluR2, but not mGluR3 in the epileptic medial perforant path. Neuropharmacology 62:1867–1873

    Article  CAS  PubMed  Google Scholar 

  80. Sachdev P (1998) Schizophrenia-like psychosis and epilepsy: the status of the association. Am J Psychiatry 155:325–336

    Article  CAS  PubMed  Google Scholar 

  81. Shenton ME, Whitford TJ, Kubicki M (2010) Structural neuroimaging in schizophrenia: from methods to insights to treatments. Dialogues Clin Neurosci 12:317–332

    PubMed Central  PubMed  Google Scholar 

  82. Shigemoto R, Kinoshita A, Wada E, Nomura S, Ohishi H, Takada M, Flor PJ, Neki A, Abe T, Nakanishi S, Mizuno N (1997) Differential presynaptic localization of metabotropic glutamate receptor subtypes in the rat hippocampus. J Neurosci 17:7503–7522

    CAS  PubMed  Google Scholar 

  83. Slater E, Beard AW, Glithero E (1963) The schizophrenia-like psychoses of epilepsy. Br J Psychiatry 109:95–150

    Article  CAS  PubMed  Google Scholar 

  84. Spooren W, Lesage A, Lavreysen H, Gasparini F, Steckler T (2010) Metabotropic glutamate receptors: their therapeutic potential in anxiety. Curr Top Behav Neurosci 2:391–413

    Article  PubMed  Google Scholar 

  85. Suarez LM, Cid E, Gal B, Inostroza M, Brotons-Mas JR, Gomez-Dominguez D, de la Prida LM, Solis JM (2012) Systemic injection of kainic acid differently affects LTP magnitude depending on its epileptogenic efficiency. PLoS One 7:e48128

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Sundram F, Cannon M, Doherty CP, Barker GJ, Fitzsimons M, Delanty N, Cotter D (2010) Neuroanatomical correlates of psychosis in temporal lobe epilepsy: voxel-based morphometry study. Br J Psychiatry 197:482–492

    Article  PubMed  Google Scholar 

  87. Swanson CJ, Bures M, Johnson MP, Linden AM, Monn JA, Schoepp DD (2005) Metabotropic glutamate receptors as novel targets for anxiety and stress disorders. Nat Rev Drug Discov 4:131–144

    Article  CAS  PubMed  Google Scholar 

  88. Tang FR, Chia SC, Chen PM, Gao H, Lee WL, Yeo TS, Burgunder JM, Probst A, Sim MK, Ling EA (2004) Metabotropic glutamate receptor 2/3 in the hippocampus of patients with mesial temporal lobe epilepsy, and of rats and mice after pilocarpine-induced status epilepticus. Epilepsy Res 59:167–180

    Article  CAS  PubMed  Google Scholar 

  89. Tang FR, Lee WL (2001) Expression of the group II and III metabotropic glutamate receptors in the hippocampus of patients with mesial temporal lobe epilepsy. J Neurocytol 30:137–143

    Article  CAS  PubMed  Google Scholar 

  90. Théberge J, Bartha R, Drost DJ, Menon RS, Malla A, Takhar J, Neufeld RW, Rogers J, Pavlosky W, Schaefer B, Densmore M, Al-Semaan Y, Williamson PC (2002) Glutamate and glutamine measured with 4.0 T proton MRS in never-treated patients with schizophrenia and healthy volunteers. Am J Psychiatry 159:1944–1946

    Article  PubMed  Google Scholar 

  91. Théberge JM, Al-Semaan Y, Williamson PC, Menon RS, Neufeld RWJ, Rajakumar N, Schaefer B, Densmore M, Drost DJ (2003) Glutamate and glutamine in the anterior cingulate and thalamus of medicated patients with chronic schizophrenia and healthy comparison subjects measured with 4.0-T proton MRS. Am J Psychiatry 160:2231–2233

    Article  PubMed  Google Scholar 

  92. Trabanco AA, Cid JM, Lavreysen H, Macdonald GJ, Tresadern G (2011) Progress in the developement of positive allosteric modulators of the metabotropic glutamate receptor 2. Curr Med Chem 18:47–68

    Article  CAS  PubMed  Google Scholar 

  93. Van den Eynde K, Missault S, Fransen E, Raeymaekers L, Willems R, Drinkenburg W, Timmermans JP, Kumar-Singh S, Dedeurwaerdere S (2014) Hypolocomotive behaviour associated with increased microglia in a prenatal immune activation model with relevance to schizophrenia. Behav Brain Res 258:179–186

    Article  PubMed  Google Scholar 

  94. Werner FM, Covenas R (2011) Classical neurotransmitters and neuropeptides involved in generalized epilepsy: a focus on antiepileptic drugs. Curr Med Chem 18:4933–4948

    Article  CAS  PubMed  Google Scholar 

  95. Wierońska JM, Pilc A (2009) Metabotropic glutamate receptors in the tripartite synapse as a target for new psychotropic drugs. Neurochem Int 55:85–97

    Article  PubMed  Google Scholar 

  96. Wotton CJ, Goldacre MJ (2012) Coexistence of schizophrenia and epilepsy: record-linkage studies. Epilepsia 53:1–4

    Article  Google Scholar 

  97. Wright RA, Johnson BG, Zhang C, Salhoff C, Kingston AE, Calligaro DO, Monn JA, Schoepp DD, Marek GJ (2012) CNS distribution of metabotropic glutamate 2 and 3 receptors: transgenic mice and [3H]LY459477 autoradiography. Neuropharmacology 66:89–98

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Stefanie Dedeurwaerdere is supported by Bijzonder Onderzoeksfonds Universiteit Antwerpen (11-443-a) and FWO project grant G.0586.12.

Conflict of interest

The authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefanie Dedeurwaerdere.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dedeurwaerdere, S., Boets, S., Janssens, P. et al. In the grey zone between epilepsy and schizophrenia: alterations in group II metabotropic glutamate receptors. Acta Neurol Belg 115, 221–232 (2015). https://doi.org/10.1007/s13760-014-0407-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13760-014-0407-7

Keywords

Navigation