Skip to main content

Fasciculations in human hereditary disease

Abstract

Fasciculations are a manifestation of peripheral nerve hyperexcitability in addition to myokymia, neuromyotonia, cramps, or tetany. Fasciculations occur in hereditary and non-hereditary diseases. Among the hereditary diseases, fasciculations are most frequently reported in familial amyotrophic lateral sclerosis (FALS), and spinal muscular atrophy (SMA). Among the non-hereditary diseases, fasciculations occur most frequently in peripheral nerve hyperexcitability syndromes (Isaac’s syndrome, voltage-gated potassium channelopathy, cramp fasciculation syndrome, Morvan syndrome). If the cause of fasciculations remains unknown, they are called benign. Systematically reviewing the literature about fasciculations in hereditary disease shows that fasciculations can be a phenotypic feature in bulbospinal muscular atrophy (BSMA), GM2-gangliosidosis, triple-A syndrome, or hereditary neuropathy. Additionally, fasciculations have been reported in familial amyloidosis, spinocerebellar ataxias, Huntington’s disease, Rett syndrome, central nervous system disease due to L1-cell adhesion molecule (L1CAM) mutations, Fabry’s disease, or Gerstmann-Sträussler disease. Rarely, fasciculations may be a phenotypic feature in patients with mitochondrial disorders or other myopathies. Fasciculations are part of the phenotype in much more genetic disorders than commonly assumed. Fasciculations not only occur in motor neuron disease, but also in hereditary neuropathy, spinocerebellar ataxia, GM2-gangliosidosis, Huntington’s disease, Rett syndrome, Fabry’s disease, Gerstmann-Sträussler disease, mitochondrial disorders, or muscular dystrophies.

This is a preview of subscription content, access via your institution.

References

  1. de Carvalho M, Swash M (2013) Origin of fasciculations in amyotrophic lateral sclerosis and benign fasciculation syndrome. JAMA Neurol 70:1562–1565

    PubMed  Google Scholar 

  2. Sadeghian H, O’Suilleabhain PE, Battiste J, Elliott JL, Trivedi JR (2011) Huntington chorea presenting with motor neuron disease. Arch Neurol 68:650–652

    PubMed  Google Scholar 

  3. Kanai K, Kuwabara S, Sawai S, Nakata M, Misawa S, Isose S et al (2008) Genetically confirmed Huntington’s disease masquerading as motor neuron disease. Mov Disord 23:748–751

    Article  PubMed  Google Scholar 

  4. Degano AL, Pasterkamp RJ, Ronnett GV (2009) MeCP2 deficiency disrupts axonal guidance, fasciculation, and targeting by altering Semaphorin 3F function. Mol Cell Neurosci 42:243–254

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Wilson PL, Kattman BB, Mulvihill JJ, Li S, Wilkins J, Wagner AF et al (2009) Prenatal identification of a novel R937P L1CAM missense mutation. Genet Test Mol Biomarkers 13:515–519

    Article  CAS  PubMed  Google Scholar 

  6. Oba N, Fujimoto Y, Hirata K, Ando N, Saida K (2000) A case of Gerstmann-Sträussler-Scheinker disease with severe muscular atrophy and vertical gaze palsy. Rinsho Shinkeigaku 40:726–731

    CAS  PubMed  Google Scholar 

  7. Janko M, Trontelj JV, Gersak K (1989) Fasciculations in motor neuron disease: discharge rate reflects extent and recency of collateral sprouting. J Neurol Neurosurg Psychiatry 52:1375–1381

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. de Carvalho M, Swash M (1998) Fasciculation potentials: a study of amyotrophic lateral sclerosis and other neurogenic disorders. Muscle Nerve 21:336–344

    Article  PubMed  Google Scholar 

  9. Finsterer J (2009) Bulbar and spinal muscular atrophy (Kennedy’s disease): a review. Eur J Neurol 16:556–561

    Article  CAS  PubMed  Google Scholar 

  10. Pierson TM, Torres PA, Zeng BJ, Glanzman AM, Adams D, Finkel RS et al (2013) Juvenile-onset motor neuron disease caused by novel mutations in β-hexosaminidase. Mol Genet Metab 108:65–69

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Vishnu VY, Modi M, Prabhakar S, Bhansali A, Goyal MK (2013) “A” motor neuron disease. J Neurol Sci. doi:10.1016/j.jns.2013.10.003

    Google Scholar 

  12. Bhatt A, Farooq MU, Aburashed R, Kassab MY, Majid A, Bhatt S et al (2009) Hereditary neuropathy with liability to pressure palsies and amyotrophic lateral sclerosis. Neurol Sci 30:241–245

    Article  PubMed  Google Scholar 

  13. Marchesi C, Ciano C, Salsano E, Nanetti L, Milani M, Gellera C et al (2011) Co-occurrence of amyotrophic lateral sclerosis and Charcot-Marie-Tooth disease type 2A in a patient with a novel mutation in the mitofusin-2 gene. Neuromuscul Disord 21:129–131

    Article  PubMed  Google Scholar 

  14. Ishiura H, Sako W, Yoshida M, Kawarai T, Tanabe O, Goto J, Takahashi Y, Date H, Mitsui J, Ahsan B, Ichikawa Y, Iwata A, Yoshino H, Izumi Y, Fujita K, Maeda K, Goto S, Koizumi H, Morigaki R, Ikemura M, Yamauchi N, Murayama S, Nicholson GA, Ito H, Sobue G, Nakagawa M, Kaji R, Tsuji S (2012) The TRK-fused gene is mutated in hereditary motor and sensory neuropathy with proximal dominant involvement. Am J Hum Genet 91:320–329

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Cappellari M, Cavallaro T, Ferrarini M, Cabrini I, Taioli F, Ferrari S et al (2011) Variable presentations of TTR-related familial amyloid polyneuropathy in seventeen patients. J Peripher Nerv Syst 16:119–129

    Article  PubMed  Google Scholar 

  16. Contégal F, Bidot S, Thauvin C, Lévèque L, Soichot P, Gras P et al (2006) Finnish amyloid polyneuropathy in a French patient. Rev Neurol (Paris) 162:997–1001

    Article  Google Scholar 

  17. van Alfen N, Sinke RJ, Zwarts MJ, Gabreëls-Festen A, Praamstra P, Kremer BP et al (2001) Intermediate CAG repeat lengths (53,54) for MJD/SCA3 are associated with an abnormal phenotype. Ann Neurol 49:805–807

    Article  PubMed  Google Scholar 

  18. Horton LC, Frosch MP, Vangel MG, Weigel-DiFranco C, Berson EL, Schmahmann JD (2013) Spinocerebellar ataxia type 7: clinical course, phenotype-genotype correlations, and neuropathology. Cerebellum 12:176–193

    Article  PubMed Central  PubMed  Google Scholar 

  19. Teive HA, Munhoz RP, Arruda WO, Lopes-Cendes I, Raskin S, Werneck LC et al (2012) Spinocerebellar ataxias: genotype-phenotype correlations in 104 Brazilian families. Clinics 67:443–449

    Article  PubMed Central  PubMed  Google Scholar 

  20. Criscuolo C, Mancini P, Saccà F, De Michele G, Monticelli A, Santoro L et al (2004) Ataxia with oculomotor apraxia type 1 in Southern Italy: late onset and variable phenotype. Neurology 63:2173–2175

    Article  CAS  PubMed  Google Scholar 

  21. Gdynia HJ, Sperfeld AD, Knirsch U, Homberg V, Rosenbohm A, Müller-Höcker J et al (2006) Benign symmetric lipomatosis with axonal neuropathy and abnormalities in specific mitochondrial tRNA regions. Eur J Med Res 11:545–546

    PubMed  Google Scholar 

  22. Starling A, de Paula F, Silva H, Vainzof M, Zatz M (2003) Calpainopathy: how broad is the spectrum of clinical variability? J Mol Neurosci 21:233–236

    Article  CAS  PubMed  Google Scholar 

  23. Nance CS, Klein CJ, Banikazemi M, Dikman SH, Phelps RG, McArthur JC et al (2006) Later-onset Fabry disease: an adult variant presenting with the cramp-fasciculation syndrome. Arch Neurol 63:453–457

    Article  PubMed  Google Scholar 

  24. Kuwabara S, Misawa S (2004) Axonal ionic pathophysiology in human peripheral neuropathy and motor neuron disease. Curr Neurovasc Res 1:373–379

    Article  CAS  PubMed  Google Scholar 

  25. Abe K, Ikeda Y (2012) Spinocerebellar ataxia type 36 (nicknamed Asidan). Brain Nerve 64:937–941

    CAS  PubMed  Google Scholar 

  26. Morimoto N, Yamashita T, Sato K, Kurata T, Ikeda Y, Kusuhara T et al (2013) Assessment of swallowing in motor neuron disease and Asidan/SCA36 patients with new methods. J Neurol Sci 324:149–155

    Article  PubMed  Google Scholar 

  27. Ashizawa T, Ranum LP (2012) GGCCTG repeats put a hex on Purkinje cells and motor neurons in SCA36. Neurology 79:302–303

    Article  CAS  PubMed  Google Scholar 

  28. Kobayashi H, Abe K, Matsuura T, Ikeda Y, Hitomi T, Akechi Y et al (2011) Expansion of intronic GGCCTG hexanucleotide repeat in NOP56 causes SCA36, a type of spinocerebellar ataxia accompanied by motor neuron involvement. Am J Hum Genet 89:121–130

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. García-Murias M, Quintáns B, Arias M, Seixas AI, Cacheiro P, Tarrío R et al (2012) ‘Costa da Morte’ ataxia is spinocerebellar ataxia 36: clinical and genetic characterization. Brain 135:1423–1435

    Article  PubMed Central  PubMed  Google Scholar 

  30. Suga N, Katsuno M, Koike H, Banno H, Suzuki K, Hashizume A et al (2013) Schwann cell involvement in the peripheral neuropathy of spinocerebellar ataxia type 3. Neuropathol Appl Neurobiol. doi:10.1111/nan.12055

    Google Scholar 

  31. Shakkottai VG, do Carmo Costa M, Dell’Orco JM, Sankaranarayanan A, Wulff H, Paulson HL. Early changes in cerebellar physiology accompany motor dysfunction in the polyglutamine disease spinocerebellar ataxia type 3. J Neurosci 2011;31:13002-14

  32. Jellinger K, Grisold W, Armstrong D, Rett A (1990) Peripheral nerve involvement in the Rett syndrome. Brain Dev 12:109–114

    Article  CAS  PubMed  Google Scholar 

  33. Bertelsen AK, Tøndel C, Krohn J, Bull N, Aarseth J, Houge G, Mellgren SI, Vedeler CA (2013) Small fibre neuropathy in Fabry disease. J Neurol 260:917–919

    Article  CAS  PubMed  Google Scholar 

  34. Biegstraaten M, van Schaik IN, Wieling W, Wijburg FA, Hollak CE (2010) Autonomic neuropathy in Fabry disease: a prospective study using the Autonomic Symptom Profile and cardiovascular autonomic function tests. BMC Neurol 10:38

    Article  PubMed Central  PubMed  Google Scholar 

  35. Ashton JC (2011) Reliability of immunolabelling in the determination of Huntington’s disease neuropathy. Brain 134:e191

    Article  PubMed  Google Scholar 

  36. de Carvalho M, Swash M (2004) Cramps, muscle pain, and fasciculations: not always benign? Neurology 63:721–723

    Article  PubMed  Google Scholar 

  37. Singh V, Gibson J, McLean B, Boggild M, Silver N, White R (2011) Fasciculations and cramps: how benign? Report of four cases progressing to ALS. J Neurol 258:573–578

    Article  PubMed  Google Scholar 

  38. Dangoumau A, Verschueren A, Hammouche E, Papon MA, Blasco H, Cherpi-Antar C et al (2014) A novel SOD1 mutation p.V31A identified with a slowly progressive form of amyotrophic lateral sclerosis. Neurobiol Aging 35:266.e1–266.e4

    Article  CAS  Google Scholar 

  39. Iwashima T, Tateishi T, Yamasaki R, Motomura K, Ohyagi Y, Kira J (2010) Two cases of familial amyotrophic lateral sclerosis with a SOD1L126S mutation showing high age at onset and slow progression. Rinsho Shinkeigaku 50:163–167

    Article  PubMed  Google Scholar 

  40. Luigetti M, Madia F, Conte A, Marangi G, Zollino M, Del Grande A et al (2009) SOD1 G93D mutation presenting as paucisymptomatic amyotrophic lateral sclerosis. Amyotroph Lateral Scler 10:479–482

    Article  CAS  PubMed  Google Scholar 

  41. Harms MM, Miller TM, Baloh RH. TARDBP-Related Amyotrophic Lateral Sclerosis. 2009 Apr 23 [updated 2009 May 28]. In: Pagon RA, Adam MP, Bird TD, Dolan CR, Fong CT, Smith RJH, Stephens K, editors. GeneReviews™ [Internet]. Seattle (WA): University of Washington, Seattle 1993–2013. Available from http://www.ncbi.nlm.nih.gov/books/NBK5942/

  42. Homma T, Nagaoka U, Kawata A, Mochizuki Y, Kawakami H, Maruyama H et al (2013) Neuropathological features of Japanese familial amyotrophic lateral sclerosis with p. N352S mutation in TARDBP. Neuropathol Appl Neurobiol. doi:10.1111/nan.12090

    Google Scholar 

  43. da Silva LR, Colovati ME, Coprerski B, de Andrade CE, Zanoteli E, Raskin S et al (2013) Spinal muscular atrophy due to a “de novo” 1.3 Mb deletion: implication for genetic counseling. Neuromuscul Disord 23:388–390

    Article  PubMed  Google Scholar 

  44. Collado-Ortiz MA, Shkurovich-Bialik P (2007) González-De Leo S, Arch-Tirado E. Type I spinal atrophy (Werdnig-Hoffman disease). Case report. Cir Cir 75:119–122

    PubMed  Google Scholar 

  45. Kosac V, Freitas MR, Prado FM, Nascimento OJ, Bittar C (2013) Familial adult spinal muscular atrophy associated with the VAPB gene: report of 42 cases in Brazil. Arq Neuropsiquiatr 71:788–790

    Article  PubMed  Google Scholar 

  46. La Spada A. Spinal and Bulbar Muscular Atrophy. 1999 Feb 26 [updated 2011 Oct 13]. In: Pagon RA, Adam MP, Bird TD, Dolan CR, Fong CT, Stephens K, editors. GeneReviews™ [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2013. Available from http://www.ncbi.nlm.nih.gov/books/NBK1333/

  47. Lee JH, Shin JH, Park KP, Kim IJ, Kim CM, Lim JG et al (2005) Phenotypic variability in Kennedy’s disease: implication of the early diagnostic features. Acta Neurol Scand 112:57–63

    Article  PubMed  Google Scholar 

  48. Kouyoumdjian JA (2005) Morita Mda P, Araújo RG. X-linked spinal and bulbar muscular atrophy (Kennedy’s disease) with long-term electrophysiological evaluation: case report. Arq Neuropsiquiatr 63:154–159

    Article  PubMed  Google Scholar 

  49. Zhao D, Wang Z, Hong D, Zhang W, Yuan Y (2013) Chronic progressive external ophthalmoplegia coexistent with motor neuron disease in a patient with a novel large-scale mitochondrial DNA deletion. Clin Neurol Neurosurg 115:1490–1492

    Article  PubMed  Google Scholar 

  50. Masurel-Paulet A, Kalscheuer VM, Lebrun N, Hu H, Levy F, Thauvin-Robinet C, Darmency-Stamboul V, El Chehadeh S, Thevenon J, Chancenotte S, Ruffier-Bourdet M, Bonnet M, Pinoit JM, Huet F, Desportes V, Chelly J, Faivre L (2014) Expanding the clinical phenotype of patients with a ZDHHC9 mutation. Am J Med Genet A 164:789–795

    Article  CAS  Google Scholar 

  51. Pierson TM, Torres PA, Zeng BJ, Glanzman AM, Adams D, Finkel RS, Mahuran DJ, Pastores GM, Tennekoon GI, Kolodny EH (2013) Juvenile-onset motor neuron disease caused by novel mutations in β-hexosaminidase. Mol Genet Metab 108:65–69

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors have nothing to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Finsterer.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Finsterer, J., Aliyev, R. Fasciculations in human hereditary disease. Acta Neurol Belg 115, 91–95 (2015). https://doi.org/10.1007/s13760-014-0335-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13760-014-0335-6

Keywords

  • Motor neuron disease
  • Amyotrophic lateral sclerosis
  • Mutation
  • Gene
  • Needle electromyography
  • Hereditary