Skip to main content

Choroidal thickness changes in patients with migraine

Abstract

This observational study evaluated choroidal thickness using spectral domain optical coherence tomography (SD-OCT) in patients with migraine and compared the results with healthy controls. The study population consisted of 42 migraine patients (36 females and 6 males) who were referred from neurology clinics and 42 controls (36 female and 6 male) with no systemic or ocular disease and no headache of any type. All 84 patients underwent complete ophthalmic examination as well as determination of choroidal thickness using a high-speed, high-resolution SD-OCT device (λ = 840 nm, 27.000 A-scans/s, 5-µm axial resolution). The migraine patients were classified into the migraine with aura group or the migraine without aura group, and a pain score from 1 to 10 was determined for each patient based on the Visual Analogue Scale (VAS). The mean choroidal thicknesses were 276.81 ± 37.76 µm in the migraine group and 300.44 ± 24.93 µm in controls. The difference in choroidal thickness between the migraine patients and the controls was significant (P = 0.001). Choroidal thickness measurements of five patients during an attack showed an acute decrease (mean 45.50 µm) in choroidal thickness from the values in the same patients during the attack-free period. There was no correlation between VAS score and the type of migraine with choroidal thickness (P > 0.05). The decrease in mean choroidal thickness in patients with migraine compared to controls may be related to the vascular pathology of the migraine. The acute decrease in choroidal thickness during an attack also lends support to this hypothesis of reduced ocular blood flow in these patients.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Panconesi A, Bartolozzi ML, Guidi L (2009) Migraine pain: reflections against vasodilatation. J Headache Pain 10(5):317–325

    Article  PubMed Central  PubMed  Google Scholar 

  2. Asghar MS, Hansen AE, Amin FM et al (2011) Ann Neurol 69(4):635–645

    Article  PubMed  Google Scholar 

  3. Thie A, Spitzer K, Lachenmayer L, Kunze K (1988) Prolonged vasospasm in migraine detected by noninvasive transcranial Doppler ultrasound. Headache J Head Face Pain 28(3):183–186

    Article  CAS  Google Scholar 

  4. Vance SK, Imamura Y, Freund KB (2011) The effects of sildenafil citrate on choroidal thickness as determined by enhanced depth imaging optical coherence tomography. Retina 31(2):332–335

    Article  CAS  PubMed  Google Scholar 

  5. Sizmaz S, Küçükerdönmez C, Pinarci EY et al (2013) The effect of smoking on choroidal thickness measured by optical coherence tomography. Br J Ophthalmol 97(5):601–604

    Article  PubMed  Google Scholar 

  6. Fujiwara T, Imamura Y, Margolis R, Slakter JS, Spaide RF (2009) Enhanced depth imaging optical coherence tomography of the choroid in highly myopic eyes. Am J Ophthalmol 148(3):445–450

    Article  PubMed  Google Scholar 

  7. Ikuno Y, Tano Y (2009) Retinal and choroidal biometry in highly myopic eyes with spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 50(8):3876–3880

    Article  PubMed  Google Scholar 

  8. Flores-Moreno I, Lugo F, Duker JS, Ruiz-Moreno JM (2013) The relationship between axial length and choroidal thickness in eyes with high myopia. Am J Ophthalmol 155:314–319

    Article  PubMed  Google Scholar 

  9. Demircan A, Altan C, Osmanbasoglu OA, Celik U, Kara N, Demirok A (2014) Subfoveal choroidal thickness measurements with enhanced depth imaging optical coherence tomography in patients with nanophthalmos. Br J Ophthalmol 98:345–349

    Article  PubMed  Google Scholar 

  10. Zengin MO, Cinar E, Kucukerdonmez C (2014) The effect of nicotine on choroidal thickness. Br J Ophthalmol 98(2):233–237

    PubMed  Google Scholar 

  11. Yeoh J, Rahman W, Chen F et al (2010) Choroidal imaging in inherited retinal disease using the technique of enhanced depth imaging optical coherence tomography. Graefes Arch Clin Exp Ophthalmol 248(12):1719–1728

    Article  PubMed  Google Scholar 

  12. Spaide RF (2009) Age-related choroidal atrophy. Am J Ophthalmol 147(5):801–810

    Article  PubMed  Google Scholar 

  13. Imamura Y, Fujiwara T, Margolis R, Spaide RF (2009) Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy. Retina 29(10):1469–1473

    Article  PubMed  Google Scholar 

  14. Maruko I, Iida T, Sugano Y, Ojima A, Ogasawara M, Spaide RF (2010) Subfoveal choroidal thickness after treatment of central serous chorioretinopathy. Ophthalmology 117(9):1792–1799

    Article  PubMed  Google Scholar 

  15. Maruko I, Iida T, Sugano Y et al (2011) Subfoveal choroidal thickness after treatment of Vogt-Koyanagi-Harada disease. Retina 31(3):510–517

    Article  PubMed  Google Scholar 

  16. Hirooka K, Tenkumo K, Fujiwara A, Baba T, Sato S, Shiraga F (2012) Evaluation of peripapillary choroidal thickness in patients with normal-tension glaucoma. BMC Ophthalmol 28(12):29. doi:10.1186/1471-2415-12-29

    Article  Google Scholar 

  17. Manjunath V, Goren J, Fujimoto JG, Duker JS (2011) Analysis of choroidal thickness in age-related macular degeneration using spectral-domain optical coherence tomography. Am J Ophthalmol 152(4):663–668

    Article  PubMed Central  PubMed  Google Scholar 

  18. Maul EA, Friedman DS, Chang DS et al (2011) Choroidal thickness measured by spectral domain optical coherence tomography: factors affecting thickness in glaucoma patients. Ophthalmology 118(8):1571–1579

    Article  PubMed Central  PubMed  Google Scholar 

  19. Fitzgerald ME, Wildsoet CF, Reiner A (2002) Temporal relationship of choroidal blood flow and thickness changes during recovery from form deprivation myopia in chicks. Exp Eye Res 74(5):561–570

    Article  CAS  PubMed  Google Scholar 

  20. Kim DY, Silverman RH, Chan RV et al (2013) Measurement of choroidal perfusion and thickness following systemic sildenafil (Viagra). Acta Ophthalmol 91(2):183–188

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Sogawa K, Nagaoka T, Takahashi A et al (2012) Relationship between choroidal thickness and choroidal circulation in healthy young subjects. Am J Ophthalmol 153(6):1129–1132

    Article  PubMed  Google Scholar 

  22. Tan CS, Ouyang Y, Ruiz H, Sadda SR (2012) Diurnal variation of choroidal thickness in normal, healthy subjects measured by spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci 53(1):261–266

    Article  PubMed  Google Scholar 

  23. Usui S, Ikuno Y, Akiba M et al (2012) Circadian changes in subfoveal choroidal thickness and the relationship with circulatory factors in healthy subjects. Invest Ophthalmol Vis Sci 53(4):2300–2307

    Article  PubMed  Google Scholar 

  24. Karaca EE, Ozdek S, Yalçin NG et al (2014) Reproducibility of choroidal thickness measurements in healthy Turkish subjects. Eur J Ophthalmol 24:202–208

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors Mehmet O. Zengin, Zeynep Elmas, Esat Cinar, Cem Kucukerdonmez declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet O. Zengin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zengin, M.O., Elmas, Z., Cinar, E. et al. Choroidal thickness changes in patients with migraine. Acta Neurol Belg 115, 33–37 (2015). https://doi.org/10.1007/s13760-014-0301-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13760-014-0301-3

Keywords

  • Choroidal thickness
  • Migraine
  • Optical coherence tomography