Skip to main content

Feasibility of transcranial Doppler and single photon emission computed tomography in compound neuroactivation task

Abstract

The aim of this study was to test feasibility of transcranial Doppler (TCD) and single photon emission computed tomography (SPECT) during compound neuroactivation task. The study was performed in 60 healthy right-handed volunteers. Cerebral blood flow velocity was measured by TCD in both middle cerebral arteries (MCA) at baseline and during computer game. The same stimulus and response pattern was used in 15 subjects that additionally underwent brain SPECT. Percentage differences between measurements were determined through quantitative result assessment. Both methods detected a statistically significant cerebral blood flow increase during neuroactivation. Correlation of TCD and SPECT showed statistically significant correlation only for the increase of cerebral blood flow velocity in the right MCA and for the right-sided cerebral blood flow increase, demonstrating that both methods partially measure similar cerebral blood flow changes that occur during neuroactivation. Comparison of TCD and SPECT showed TCD to be inadequately sensitive method for evaluation of cerebral blood flow during complex activation paradigm.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Wintermark M, Sesay M, Barbier E, Borbely K, Dillon WP, Eastwood JD et al (2005) Comparative overview of brain perfusion imaging techniques. J Neuroradiol 32:294–314. doi:JNR-12-2005-32-5-0150-9861-101019-200508160

    PubMed  Article  CAS  Google Scholar 

  2. Stroobant N, Vingerhoets G (2000) Transcranial Doppler ultrasonography monitoring of cerebral hemodynamics during performance of cognitive tasks: a review. Neuropsychol Rev 10:213–231. doi:10.1023/A:1026412811036

    PubMed  Article  CAS  Google Scholar 

  3. Babikian VL, Feldmann E, Wechsler LR, Newell DW, Gomez CR, Bogdahn U et al (2000) Transcranial Doppler ultrasonography: year 2000 update. J Neuroimaging 10:101–115

    PubMed  CAS  Google Scholar 

  4. Matteis M, Frederico F, Troisi E, Pasqualetti P, Vernieri F, Caltagirone C et al (2006) Cerebral blood flow velocity changes during meaningful and meaningless gestures–a functional transcranial Doppler study. Eur J Neurol 13:24–29. doi:10.1111/j.1468-1331.2006.01219.x

    PubMed  Article  CAS  Google Scholar 

  5. Deppe M, Ringelstein EB, Knecht S (2004) The investigation of functional brain lateralization by transcranial Doppler sonography. Neuroimage 21:1124–1146

    PubMed  Article  Google Scholar 

  6. Droste DW, Harders AG, Rastogi E (1998) A transcranial Doppler study of blood flow velocity in the middle cerebral arteries performed at rest and during mental activities. Stroke 20:1005–1010. doi:10.1161/01.STR.20.8.1005

    Article  Google Scholar 

  7. Klingelhofer J, Matzander G, Sander D, Schwarze J, Boecker H (1997) Assessment of functional hemispheric asymmetry by bilateral simultaneous cerebral blood flow velocity monitoring. J Cereb Blood Flow Metab 17:577–585. doi:10.1097/00004647-199705000-00013

    PubMed  Article  CAS  Google Scholar 

  8. Deppe M, Knecht S, Papke K, Lohmann H, Fleischer H, Heindel W et al (2000) Assessment of hemispheric language lateralization: a comparison between fMRI and fTCD. J Cereb Blood Flow Metab 20:263–268. doi:10.1097/00004647-200002000-00006

    PubMed  Article  CAS  Google Scholar 

  9. Schmidt P, Krings T, Willmes K, Roessler F, Reul J, Thron A (1999) Determination of cognitive hemispheric lateralization by “functional” transcranial Doppler cross-validated by functional MRI. Stroke 30:939–945. doi:10.1161/01.STR.30.5.939

    PubMed  Article  CAS  Google Scholar 

  10. Sloan MA, Alexandrov AV, Tegeler CH, Spencer MP, Caplan LR, Feldmann E et al (2004) Therapeutics and technology assessment subcommittee of the American academy of neurology assessment: transcranial Doppler ultrasonography: report of the therapeutics and technology assessment subcommittee of the American academy of neurology. Neurology 62:1468–1481

    PubMed  Article  CAS  Google Scholar 

  11. Warwick JM (2004) Imaging of brain functioning using SPECT. Metab Brain Dis 19:113–123. doi:10.1023/B:MEBR.0000027422.48744.a3

    PubMed  Article  Google Scholar 

  12. Garcia Alloza M, Bacskai BJ (2004) Techniques for brain imaging in vivo. Neuromolecular Med 6:65–78. doi:10.1385/NMM:6:1:065

    PubMed  Article  CAS  Google Scholar 

  13. Asenbaum S, Brücke T, Pirker W, Pietrzyk U, Podreka I (1998) Imaging of cerebral blood flow with technetium-99 m-HMPAO and technetium-99 m-ECD: a comparison. J Nucl Med 39:613–618

    PubMed  CAS  Google Scholar 

  14. Podreka I, Baumgartner C (1989) Quantification of regional cerebral blood flow with IMP-SPECT. Reproducibility and clinical relevance of flow values. Stroke 20:183–191. doi:10.1161/01.STR.20.2.183

    PubMed  Article  CAS  Google Scholar 

  15. Van Laere KJ, Versijpt J, Koole M, Vandenberghe S, Lahorte P, Lemahieu I et al (2002) Experimental performance assessment of SPM for SPECT neuroactivation studies using a subresolution sandwich phantom design. Neuroimage 16:200–216

    PubMed  Article  Google Scholar 

  16. Lahorte P, Vandenberghe S, Van Laere K, Audenaert K, Lemahieu I, Dierckx RA (2000) Assessing the performance of SPM analyses of SPECT neuroactivation studies, statistical parametric mapping. Neuroimage 12:757–764

    PubMed  Article  CAS  Google Scholar 

  17. Catafau AM (2001) Brain SPECT in clinical practice, Part I: perfusion. J Nucl Med 42:259–271

    PubMed  CAS  Google Scholar 

  18. Alexandrov AV, Demarin V (1999) Insonation technique and diagnostic criteria for transcranial Doppler sonography. Acta Clin Croat 38:97–108

    Google Scholar 

  19. Tiecks FP, Planck J, Haberl RL, Brandt T (1996) Reduction in posterior cerebral artery blood flow velocity during caloric vestibular stimulation. J Cereb Blood Flow Metab 16:1379–1382. doi:10.1097/00004647-199611000-00037

    PubMed  Article  CAS  Google Scholar 

  20. Trkanjec Z, Demarin V (2007) Hemispheric asymmetries in blood flow during color stimulation. J Neurol 254:861–865. doi:10.1007/s00415-006-0452-0

    PubMed  Article  Google Scholar 

  21. Floel A, Jansen A, Deppe M, Kanowski M, Konrad C, Sommer J, Knecht S (2005) Atypical hemispheric dominance for attention: functional MRI topography. J Cereb Blood Flow Metab 25:1197–1208. doi:10.1038/sj.jcbfm.9600114

    PubMed  Article  Google Scholar 

  22. Sabri O, Owega A, Schreckenberger M, Sturz L, Fimm B, Kunert P et al (2003) A truly simultaneous combination of functional transcranial Doppler sonography and H(2)(15)0 PET adds fundamental new information on differences in cognitive activation between schizophrenics and healthy control subjects. J Nucl Med 44(5):671–681

    PubMed  Google Scholar 

  23. Knecht S, Deppe M, Ebner A, Henningsen H, Huber T, Jokeit H et al (1998) Noninvasive determination of language lateralization by functional transcranial Doppler sonography: a comparison with the Wada test. Stroke 29:82–86

    PubMed  Article  CAS  Google Scholar 

  24. Rosengarten B, Osthaus S, Kaps M (2003) Doppler investigation of within-session reproducibility in a visual stimulation task to assess the volunteer-dependent variation. Cerebrovasc Dis 16:53–60. doi:10.1159/000070116

    PubMed  Article  CAS  Google Scholar 

  25. Aaslid R, Lindegaard KE, Sorteberg W, Nornes H (1987) Cerebral autoregulation dynamics in humans. Stroke 20:45–52. doi:10.1161/01.STR.20.1.45

    Article  Google Scholar 

  26. Barnden LR, Behin-Ain S, Kwiatek R, Casse R, Yelland L (2005) Age related preservation and loss in optimized brain SPECT. Nucl Med Commun 26:497–503

    PubMed  Article  Google Scholar 

  27. Li ZJ, Matsuda H, Asada T, Ohnishi T, Kanetaka H, Imabayashi E, Tanaka F (2004) Gender differences in brain perfusion 99 mTc-EDC SPECT in aged healthy volunteers after correction for partial volume effects. Nucl Med Commun 25:999–1005

    PubMed  Article  Google Scholar 

  28. Inoue K, Nakagawa M, Goto R, Kinomura S, Sato T, Sato K et al (2003) Regional differences between 99 mTc-ECD and 99 mTc-HMPAO SPET in perfusion changes with age and gender in healthy adults. Eur J Nucl Med Mol Imaging 30:1489–1497. doi:10.1007/s00259-003-1234-x

    PubMed  Article  Google Scholar 

  29. Kelley RE, Chang JY, Scheinman NJ, Levin BE, Duncan RC, Lee SC (1992) Transcranial Doppler assessment of cerebral flow velocity during cognitive tasks. Stroke 23:9–14. doi:10.1161/01.STR.23.1.9

    PubMed  Article  CAS  Google Scholar 

  30. Rossini PM, Altamura C, Ferreti A, Vernieri F, Zappasodi F, Caulo M, Pizzella V, Del Gratta C, Romani GL, Tecchio F (2004) Does cerebrovascular disease affect the coupling between neuronal activity and local hemodynamics? Brain 127(Pt 1):99–110. doi:10.1093/brain/awh012

    PubMed  Article  CAS  Google Scholar 

  31. Knecht S, Jansen A, Frank A, van Randenborgh J, Sommer J, Kanowski M, Heinze HJ (2003) How atypical is atypical language dominance? Neuroimage 18:917–927

    PubMed  Article  CAS  Google Scholar 

  32. Borbely K, Gjedde A, Nyary I, Czirjak S, Donauer N, Buck A (2003) Speech activation of language dominant hemisphere: a single-photon emission computed tomography study. Neuroimage 20:987–994

    PubMed  Article  Google Scholar 

  33. Goethals I, Audenaert K, Van De Jacobs F, Wiele C, Vermeir G, Vandierendonck A, Van Heeringen C, Dierckx R (2002) Toward clinical application of neuropsychological activation probes with SPECT: a spatial working memory task. J Nucl Med 42:1426–1431

    Google Scholar 

  34. Uzuner N, Ak I, Gucuyener D, Asil T, Vardareli E, Ozdemir G (2002) Cerebral hemodynamic patterns with technetium Tc 99 mexametazime single photon emission computed tomography and transcranial Doppler sonography: a validation study using visual stimulation. J Ultrasound Med 21:955–959

    PubMed  Google Scholar 

  35. Boettger S, Haberl R, Prosiegel M, Audebert H, Rumberg B, Forsting M, Gizewski ER (2010) Differences in cerebral activation during perception of optokinetic computer stimuli and video clips of living animals: an fMRI study. Brain Res 1354:123–139

    Article  Google Scholar 

  36. Gitelman DR, Nobre AC, Parrish TB, LaBar KS, Kim YH, Meyer JR, Mesulam MM (1999) A large-scale distributed network for covert spatial attention: further anatomical delineation based on stringent behavioural and cognitive controls. Brain 122:1093–1106. doi:10.1093/brain/122.6.1093

    PubMed  Article  Google Scholar 

  37. Perry RJ, Zeki S (2000) The neurology of saccades and covert shifts in spatial attention: an event-related fMRI study. Brain 123:2273–2288. doi:10.1093/brain/123.11.2273

    PubMed  Article  Google Scholar 

  38. Malhotra P, Coulthrd EJ, Husain M (2009) Role of right posterior parietal cortex in maintaining attention to spatial locations over time. Brain 123:645–660. doi:10.1093/brain/awn350

    Article  Google Scholar 

  39. Mohanty A, Gitelman DR, Small DM, Mesulam MM (2008) The spatial attention network interacts with limbic and monoaminergic systems to modulate motivation-induced attention shifts. Cereb Cortex 18:2604–2613. doi:10.1093/cercor/bhn021

    PubMed  Article  Google Scholar 

Download references

Acknowledgments

The authors of the manuscript have no duality of interest to declare. The authors have no sources of support that require acknowledgment. The authors have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marijana Lisak.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lisak, M., Trkanjec, Z., Plavec, D. et al. Feasibility of transcranial Doppler and single photon emission computed tomography in compound neuroactivation task. Acta Neurol Belg 113, 303–311 (2013). https://doi.org/10.1007/s13760-012-0152-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13760-012-0152-8

Keywords

  • Cerebral blood flow
  • Neuroactivation
  • Transcranial Doppler
  • Single photon emission computed tomography