Skip to main content

Advertisement

Log in

Gpmb-yolo: a lightweight model for efficient blood cell detection in medical imaging

  • Research
  • Published:
Health Information Science and Systems Aims and scope Submit manuscript

Abstract

In the field of biomedical science, blood cell detection in microscopic images is crucial for aiding physicians in diagnosing blood-related diseases and plays a pivotal role in advancing medicine toward more precise and efficient treatment directions. Addressing the time-consuming and error-prone issues of traditional manual detection methods, as well as the challenge existing blood cell detection technologies face in meeting both high accuracy and real-time requirements, this study proposes a lightweight blood cell detection model based on YOLOv8n, named GPMB-YOLO. This model utilizes advanced lightweight strategies and PGhostC2f design, effectively reducing model complexity and enhancing detection speed. The integration of the simple parameter-free attention mechanism (SimAM) significantly enhances the model’s feature extraction ability. Furthermore, we have designed a multidimensional attention-enhanced bidirectional feature pyramid network structure, MCA-BiFPN, optimizing the effect of multi-scale feature fusion. And use genetic algorithms for hyperparameter optimization, further improving detection accuracy. Experimental results validate the effectiveness of the GPMB-YOLO model, which realized a 3.2% increase in mean Average Precision (mAP) compared to the baseline YOLOv8n model and a marked reduction in model complexity. Furthermore, we have developed a blood cell detection system and deployed the model for application. This study serves as a valuable reference for the efficient detection of blood cells in medical images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Kutlu H, Avci E, Özyurt F. White blood cells detection and classification based on regional convolutional neural networks. Med Hypotheses. 2020;135: 109472.

    Article  CAS  PubMed  Google Scholar 

  2. Bain BJ. Blood cells: a practical guide. New York: Wiley; 2021.

    Google Scholar 

  3. Gordon-Smith T. Structure and function of red and white blood cells. Medicine. 2013;41:193–9.

    Article  Google Scholar 

  4. Hamasaki N, Yamamoto M. Red blood cell function and blood storage. Vox Sang. 2000;79:191–7.

    Article  CAS  PubMed  Google Scholar 

  5. Harrison P. Platelet function analysis. Blood Rev. 2005;19:111–23.

    Article  PubMed  Google Scholar 

  6. Lowenberg B, Downing JR, Burnett A. Acute myeloid leukemia. N Engl J Med. 1999;341(14):1051–62.

    Article  CAS  PubMed  Google Scholar 

  7. Cascio MJ, DeLoughery TG. Anemia: evaluation and diagnostic tests. Med Clin. 2017;101(2):263–84.

    Google Scholar 

  8. Gauer RL, Braun MM. Thrombocytopenia. Am Fam Phys. 2012;85(6):612–22.

    Google Scholar 

  9. Haden RL. The origin of the microscope. Ann Med Hist. 1939;1:30.

    PubMed  PubMed Central  Google Scholar 

  10. Bardell D. The invention of the microscope. Bios. 2004;75:78–84.

    Article  Google Scholar 

  11. Schmid-Schönbein H, Gosen JV, Heinich L, Klose HJ, Volger E. A counter-rotating, “Rheoscope Chamber’’ for the Study of the microrheology of blood cell aggregation by microscopic observation and microphotometry. Microvasc Res. 1973;6:366–76.

    Article  PubMed  Google Scholar 

  12. Rebuck JW, Woods HL. Electron microscope studies of blood cells. Blood. 1948;3:175–91.

    Article  CAS  PubMed  Google Scholar 

  13. Wang H, Lei Z, Zhang X, Zhou B, Peng J. Machine learning basics. Deep Learn. 2016; 98–164.

  14. Jordan MI, Mitchell TM. Machine learning: trends, perspectives, and prospects. Science. 2015;349:255–60. https://doi.org/10.1126/science.aaa8415.

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  15. Zhao Z-Q, Zheng P, Xu S, Wu X. Object detection with deep learning: a review. IEEE Trans Neural Netw Learn Syst. 2019;30:3212–32.

    Article  PubMed  Google Scholar 

  16. Isensee F, Jaeger PF, Kohl SAA, et al. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods. 2021;18(2):203–11.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang J, Zhang Y, Jin Y, et al. MDU-Net: multi-scale densely connected U-Net for biomedical image segmentation. Health Inf Sci Syst. 2023;11:13. https://doi.org/10.1007/s13755-022-00204-9.

    Article  PubMed  Google Scholar 

  18. Dar RA, Rasool M, Assad A. Breast cancer detection using deep learning: datasets, methods, and challenges ahead. Comput Biol Med. 2022;149: 106073.

    Article  PubMed  Google Scholar 

  19. Daoud H, Bayoumi MA. Efficient epileptic seizure prediction based on deep learning. IEEE Trans Biomed Circ Syst. 2019;13(5):804–13.

    Article  Google Scholar 

  20. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–44.

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Guo Y, Liu Y, Oerlemans A, Lao S, Wu S, Lew MS. Deep learning for visual understanding: a review. Neurocomputing. 2016;187:27–48.

    Article  Google Scholar 

  22. Redmon J, Divvala S, Girshick R, Farhadi, A. You only look once: unified, real-time object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. pp. 779–788.

  23. Redmon J, Farhadi A. YOLO9000: better, faster, stronger. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. pp. 7263–7271.

  24. Redmon J, Farhadi A. YOLOv3: an incremental improvement 2018.

  25. Bochkovskiy A, Wang C-Y, Liao H-YM. YOLOv4: optimal speed and accuracy of object detection; 2020.

  26. Thuan D. Evolution of Yolo Algorithm and Yolov5: the state-of-the-art object detention algorithm; 2021.

  27. Li C, Li L, Jiang H, Weng K, Geng Y, Li L, Ke Z, Li Q, Cheng M, Nie W, et al. YOLOv6: a single-stage object detection framework for industrial applications; 2022.

  28. Wang C-Y, Bochkovskiy A, Liao H-YM. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In Proceedings of IEEE/CVF conference on computer vision and pattern recognition; 2023. pp. 7464–7475.

  29. Jiang P, Ergu D, Liu F, Cai Y, Ma B. A review of Yolo algorithm developments. Procedia Comput Sci. 2022;199:1066–73. https://doi.org/10.1016/j.procs.2022.01.135.

    Article  Google Scholar 

  30. Gai R, Chen N, Yuan H. A detection algorithm for Cherry fruits based on the improved YOLO-v4 model. Neural Comput Appl. 2023;35:13895–906. https://doi.org/10.1007/s00521-021-06029-z.

    Article  Google Scholar 

  31. Liu W, Ren G, Yu R, Guo S, Zhu J, Zhang L. Image-adaptive YOLO for object detection in adverse weather conditions. In: Proceedings of the AAAI conference on artificial intelligence, vol. 36; 2022. pp. 1792–800.

  32. Wu S, Zhang L. Using popular object detection methods for real time forest fire detection. In: Proceedings of the 2018 11th international symposium on computational intelligence and design (ISCID), vol. 01; 2018. pp. 280–284.

  33. Wang S, Luo J, Zhou Q, Ren X, Zhang, Y. A differential diagnose method for dermoscopy images. In: 2023 15th international conference on advanced computational intelligence (ICACI), Seoul, Korea, Republic of, 2023, pp. 1–8,.https://doi.org/10.1109/ICACI58115.2023.10146178.

  34. Laroca R, Severo E, Zanlorensi LA, Oliveira LS, Gonçalves GR, Schwartz WR, Menotti D. A robust real-time automatic license plate recognition based on the YOLO detector. In: Proceedings of the 2018 international joint conference on neural networks (ijcnn); IEEE; 2018. pp. 1–10.

  35. Kuznetsova A, Maleva T, Soloviev V. Detecting Apples in Orchards Using YOLOv3 and YOLOv5 in General and Close-up Images. In: Proceedings of the advances in neural networks-ISNN 2020: 17th international symposium on neural networks, ISNN 2020, Cairo, Egypt, December 4–6, 2020, Proceedings 17; Springer; 2020. pp. 233–243.

  36. Banik PP, Saha R, Kim KD. An automatic nucleus segmentation and CNN model based classification method of white blood cell. Expert Syst Appl. 2020;149: 113211.

    Article  Google Scholar 

  37. Leng B, Leng M, Ge M, et al. Knowledge distillation-based deep learning classification network for peripheral blood leukocytes. Biomed Signal Process Control. 2022;75: 103590.

    Article  Google Scholar 

  38. Hosseini M, Bani-Hani D, Lam SS. Leukocytes image classification using optimized convolutional neural networks. Expert Syst Appl. 2022;205: 117672.

    Article  Google Scholar 

  39. Zhao J, Zhang M, Zhou Z, Chu J, Cao F. Automatic identifying and counting blood cells in smear images. Med Biol Eng Comput. 2017;55:1287–301. https://doi.org/10.1007/s11517-016-1590-x.

    Article  PubMed  Google Scholar 

  40. Raina S, Khandelwal A, Gupta S, et al. Blood cells detection using faster-RCNN. In: 2020 IEEE international conference on computing, power and communication technologies (GUCON). IEEE; 2020. pp. 217–222.

  41. Alam MM, Islam MT. Machine learning approach of automatic identification and counting of blood cells. Healthc Technol Lett. 2019;6:103–8. https://doi.org/10.1049/htl.2018.5098.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Rohaziat N, Razali M, Nurshazwani W, Othman N. White blood cells detection using YOLOv3 with CNN feature extraction models. IJACSA; 2020, 11. https://doi.org/10.14569/IJACSA.2020.0111058.

  43. Xia T, Fu YQ, Jin N, Chazot P, Angelov P, Jiang R. AI-enabled microscopic blood analysis for microfluidic COVID-19 hematology. In: Proceedings of the 2020 5th international conference on computational intelligence and applications (ICCIA); IEEE; 2020. pp. 98–102.

  44. Liu R, Ren C, Fu M, Chu Z, Guo J. Platelet detection based on improved YOLO_v3. Cyborg Bionic Syst 2022, 2022, 2022/9780569, https://doi.org/10.34133/2022/9780569.

  45. Chen Y-M, Tsai J-T, Ho W-H. Automatic identifying and counting blood cells in smear images by using single shot detector and Taguchi method. BMC Bioinform. 2022;22:635. https://doi.org/10.1186/s12859-022-05074-2.

    Article  CAS  Google Scholar 

  46. Shakarami A, Menhaj MB, Mahdavi-Hormat A, Tarrah H. A fast and yet efficient YOLOv3 for blood cell detection. Biomed Signal Process Control. 2021;66: 102495. https://doi.org/10.1016/j.bspc.2021.102495.

    Article  Google Scholar 

  47. Liu C, Li D, Huang P. ISE-YOLO: improved squeeze-and-excitation attention module based YOLO for blood cells detection. In: Proceedings of the 2021 IEEE international conference on big data (Big Data); IEEE; 2021. pp. 3911–3916.

  48. Xu F, Li X, Yang H, Wang Y, Xiang W. TE-YOLOF: tiny and efficient YOLOF for blood cell detection. Biomed Signal Process Control. 2022;73: 103416. https://doi.org/10.1016/j.bspc.2021.103416.

    Article  Google Scholar 

  49. Han K, Wang Y, Tian Q, Guo J, Xu C, Xu C. GhostNet: more features from cheap operations. In Proceedings of the 2020 IEEE/CVF conference on computer vision and pattern recognition (CVPR); 2020. pp. 1577–1586.

  50. Chen J, Kao S, He H, et al. Run, don’t walk: chasing higher FLOPS for faster neural networks. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition; 2023. pp. 12021–12031.

  51. Yang L, Zhang R Y, Li L, et al. Simam: a simple, parameter-free attention module for convolutional neural networks. In: International conference on machine learning. PMLR; 2021. pp. 11863–11874.

  52. Liu S, Qi L, Qin H, et al. Path aggregation network for instance segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2018. pp. 8759–8768.

  53. Tan M, Pang R, Le QV. EfficientDet: scalable and efficient object detection. In: Proceedings of the 2020 IEEE/CVF conference on computer vision and pattern recognition (CVPR); 2020. pp. 10778–10787.

  54. Yu Y, Zhang Y, Cheng Z, et al. MCA: multidimensional collaborative attention in deep convolutional neural networks for image recognition. Eng Appl Artif Intell. 2023;126: 107079.

    Article  Google Scholar 

  55. Holland JH. Genetic algorithms. Sci Am. 1992;267(1):66–73.

    Article  ADS  Google Scholar 

  56. Zhu D, Wang S, Zhou C, et al. Human memory optimization algorithm: a memory-inspired optimizer for global optimization problems. Expert Syst Appl. 2024;237: 121597.

    Article  Google Scholar 

  57. Slowik A, Kwasnicka H. Evolutionary algorithms and their applications to engineering problems. Neural Comput Appl. 2020;32:12363–79.

    Article  Google Scholar 

  58. Zhu D, Wang S, Zhou C, et al. Manta ray foraging optimization based on mechanics game and progressive learning for multiple optimization problems. Appl Soft Comput. 2023; 110561.

  59. He X, Pan Q, Gao L, et al. A greedy cooperative co-evolution ary algorithm with problem-specific knowledge for multi-objective flowshop group scheduling problem. IEEE Trans Evolut Comput; 2021.

  60. Gan, S. BCCD_Dataset, HPC-AI Lab, 2018. https://github.com/Shenggan/BCCD_Dataset.

  61. Rezatofighi SH, Soltanian-Zadeh H. Automatic recognition of five types of white blood cells in peripheral blood. Comput Med Imaging Graph. 2011;35(4):333–43.

    Article  PubMed  Google Scholar 

  62. Chen H, Liu J, Hua C, et al. Transmixnet: an attention based double-branch model for white blood cell classification and its training with the fuzzified training data. In: 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE; 2021. pp. 842–847.

Download references

Funding

This work is supported by the National Natural Science Foundation of China (Nos. 62272418, 62102058) and the basic public welfare research program of Zhejiang Province (No. LGG18E050011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changjun Zhou or Chengye Zou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, C., Zhu, D., Zhou, C. et al. Gpmb-yolo: a lightweight model for efficient blood cell detection in medical imaging. Health Inf Sci Syst 12, 24 (2024). https://doi.org/10.1007/s13755-024-00285-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13755-024-00285-8

Keywords

Navigation