Skip to main content

Advertisement

Log in

Dynamically stabilized recurrent neural network optimized with Artificial Gorilla Troops espoused Alzheimer’s disorder detection using EEG signals

  • Research
  • Published:
Health Information Science and Systems Aims and scope Submit manuscript

Abstract

Alzheimer’s disease is an incurable neurological disorder that damages cognitive abilities, but early identification reduces the symptoms significantly. The absence of competent healthcare professionals has made automatic identification of Alzheimer’s disease more crucial since it lessens the amount of work for staff members and improves diagnostic outcomes. The major aim of this work is “to develop a computer diagnostic scheme that makes it possible to identify AD using the Electroencephalogram (EEG) signal”. Therefore, Dynamically Stabilized Recurrent Neural Network Optimized with Artificial Gorilla Troops espoused Alzheimer’s Disorder Detection using EEG signals (DSRNN-AGTO-ADD) is proposed in this paper. Here, Dynamic Context-Sensitive Filter (DCSF) is considered to eliminate the noise, and interference from the EEG signal. Then Adaptive and Concise Empirical Wavelet Transform (ACEWT) is utilized to separate the filtered signals from the frequency bands, and to feature extraction from the EEG signals. Signal’s characteristics, like logarithmic bandwidth power, standard deviation, variance, kurtosis, mean energy, mean square, norm are combined to ACEWT method to create feature vectors and enhance diagnostic performance. After that, the extracted features are fed to Dynamically Stabilized Recurrent Neural Network (DSRNN) for task classification. Weight parameter of DSRNN is enhanced using Artificial Gorilla Troops Optimization Algorithm (AGTOA). The proposed DSRNN-AGTOA-ADD algorithm is activated in MATLAB. The metrics including accuracy, specificity, sensitivity, precision, computation time, ROC are examined for AD diagnosis. The performance of the proposed DSRNN-AGTOA-ADD approach attains 12.98%, 5.98% and 23.45% high specificity; 29.98%, 23.32% and 19.76% lower computation Time and 29.29%, 8.365%, 8.551% and 7.915% higher ROC compared with the existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Janghel RR, Rathore YK. Deep convolution neural network based system for early diagnosis of Alzheimer’s disease. Irbm. 2021;42(4):258–67.

    Article  Google Scholar 

  2. Şeker M, Özbek Y, Yener G, Özerdem MS. Complexity of EEG dynamics for early diagnosis of Alzheimer’s disease using permutation entropy neuromarker. Comput Methods Programs Biomed. 2021;206: 106116.

    Article  PubMed  Google Scholar 

  3. Sidulova M, Nehme N, Park CH. Towards Explainable Image Analysis for Alzheimer’s Disease and Mild Cognitive Impairment Diagnosis. In 2021 IEEE Applied Imagery Pattern Recognition Workshop (AIPR) (pp. 1–6). IEEE, (2021).

  4. Tavakoli N, Karimi Z, AsadiJouzani S, Azizi N, Rezakhani S, Tobeiha A. Machine Learning-Based Brain Diseases Diagnosing in Electroencephalogram Signals, Alzheimer’s, and Parkinson’s. In Prognostic Models in Healthcare: AI and Statistical Approaches (pp. 161–191). Singapore: Springer Nature Singapore, (2022).

  5. Sharma R, Goel T, Tanveer M, Lin CT, Murugan R. Deep learning based diagnosis and prognosis of Alzheimer’s disease: A comprehensive review. IEEE Transactions on Cognitive and Developmental Systems, (2023).

  6. Dixit S, Gaikwad A, Vyas V, Shindikar M, Kamble K. United Neurological study of disorders: Alzheimer’s disease, Parkinson's disease detection, Anxiety detection, and Stress detection using various Machine learning Algorithms. In 2022 International Conference on Signal and Information Processing (IConSIP) (pp. 1–6). IEEE, (2022).

  7. Arjaria SK, Rathore AS, Bisen D, Bhattacharyya S. Performances of Machine Learning Models for Diagnosis of Alzheimer’s Disease. Annals of Data Science, pp.1–29, (2022).

  8. Shajin FH, Salini P, Rajesh P, Nagoji Rao VK. Efficient framework for brain tumour classification using hierarchical deep learning neural network classifier. Comput Methods Biomech Biomed Eng: Imaging Vis. 2023;11(3):750–7.

    Google Scholar 

  9. Fouladi S, Safaei AA, Arshad NI, Ebadi MJ, Ahmadian A. The use of artificial neural networks to diagnose Alzheimer’s disease from brain images. Multimed Tools Appl. 2022;81(26):37681–721.

    Article  Google Scholar 

  10. Deepa N, Chokkalingam SP. Optimization of VGG16 utilizing the arithmetic optimization algorithm for early detection of Alzheimer’s disease. Biomed Signal Process Control. 2022;74: 103455.

    Article  Google Scholar 

  11. Ghoraani B, Boettcher LN, Hssayeni MD, Rosenfeld A, Tolea MI, Galvin JE. Detection of mild cognitive impairment and Alzheimer’s disease using dual-task gait assessments and machine learning. Biomed Signal Process Control. 2021;64: 102249.

    Article  PubMed  Google Scholar 

  12. Tu Y, Lin S, Qiao J, Zhuang Y, Zhang P. Alzheimer’s disease diagnosis via multimodal feature fusion. Comput Biol Med. 2022;148: 105901.

    Article  PubMed  Google Scholar 

  13. Dao Q, El-Yacoubi MA, Rigaud AS. Detection of alzheimer disease on online handwriting using 1D convolutional neural network. IEEE Access. 2022;11:2148–55.

    Article  Google Scholar 

  14. English M, Kumar C, Ditterline BL, Drazin D, Dietz N. Machine Learning in Neuro-Oncology, Epilepsy, Alzheimer’s Disease, and Schizophrenia. Machine Learning in Clinical Neuroscience: Foundations and Applications, pp.349–361, (2022).

  15. Seifallahi M, Mehraban AH, Galvin JE, Ghoraani B. Alzheimer’s disease detection using comprehensive analysis of Timed Up and Go test via Kinect V. 2 camera and machine learning. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 30, pp.1589–1600, (2022).

  16. Sudharsan M, Thailambal G. Alzheimer’s disease prediction using machine learning techniques and principal component analysis (PCA). Materials Today: Proceedings (2021).

  17. Liu J, Li M, Luo Y, Yang S, Li W, Bi Y. Alzheimer’s disease detection using depthwise separable convolutional neural networks. Comput Methods Programs Biomed. 2021;203: 106032.

    Article  PubMed  Google Scholar 

  18. NoorulJulaiha A, Priyatharshini R. A Study on Automatic Detection of Alzheimer’s Disease Using Multimodalities. In Rising Threats in Expert Applications and Solutions: Proceedings of FICR-TEAS 2022 (pp. 631–642). Singapore: Springer Nature Singapore (2022).

  19. Alorf A, Khan MUG. Multi-label classification of Alzheimer’s disease stages from resting-state fMRI-based correlation connectivity data and deep learning. Comput Biol Med. 2022;151: 106240.

    Article  PubMed  Google Scholar 

  20. Kaplan E, Dogan S, Tuncer T, Baygin M, Altunisik E. Feed-forward LPQNet based automatic alzheimer’s disease detection model. Comput Biol Med. 2021;137: 104828.

    Article  PubMed  Google Scholar 

  21. Zhou Y, Lu Y, Pei Z. Intelligent diagnosis of Alzheimer’s disease based on internet of things monitoring system and deep learning classification method. Microprocess Microsyst. 2021;83: 104007.

    Article  Google Scholar 

  22. Helaly HA, Badawy M, Haikal AY. Deep learning approach for early detection of Alzheimer’s disease. Cogn Comput. 2022;14(5):1711–27.

    Article  Google Scholar 

  23. Alvi AM, Siuly S, Wang H, Wang K, Whittaker F. A deep learning based framework for diagnosis of mild cognitive impairment. Knowl-Based Syst. 2022;248: 108815.

    Article  Google Scholar 

  24. Petti U, Baker S, Korhonen A. A systematic literature review of automatic Alzheimer’s disease detection from speech and language. J Am Med Inform Assoc. 2020;27(11):1784–97.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Alvi AM, Siuly S, De Cola MC, Wang H. Dram-net: A deep residual alzheimer's diseases and mild cognitive impairment detection network using eeg data. In International Conference on Health Information Science (pp. 42–53). Cham: Springer Nature Switzerland, (2022).

  26. Alvi AM, Siuly S, Wang H. A long short-term memory based framework for early detection of mild cognitive impairment from EEG signals. IEEE Trans Emerg Topics Comput Intell. 2022;7(2):375–88.

    Article  Google Scholar 

  27. Comput (2023) https://doi.org/10.1007/s12652-023-04683-w

  28. Ebrahimi A, Luo S. Disease neuroimaging initiative, FTAS: convolutional neural networks for Alzheimer’s disease detection on MRI images. J Med Imaging. 2021;8(2):024503–024503.

    Article  Google Scholar 

  29. Alvi AM, Siuly S, Wang H. Developing a deep learning based approach for anomalies detection from EEG data. In International Conference on Web Information Systems Engineering (pp. 591–602). Cham: Springer International Publishing. (2021).

  30. Al-Shoukry S, Rassem TH, Makbol NM. Alzheimer’s diseases detection by using deep learning algorithms: a mini-review. IEEE Access. 2020;8:77131–41.

    Article  Google Scholar 

  31. Dogan S, Baygin M, Tasci B, Loh HW, Barua PD, Tuncer T, Acharya UR. Primate brain pattern-based automated Alzheimer’s disease detection model using EEG signals. Cogn Neurodyn. 2023;17(3):647–59.

    Article  PubMed  Google Scholar 

  32. Alvi AM, Siuly S, Wang H. Challenges in electroencephalography data processing using machine learning approaches. In Australasian Database Conference (pp. 177–184). Cham: Springer International Publishing (2022).

  33. https://ieee-dataport.org/documents/eeg-signal-dataset

  34. Saab S Jr, Fu Y, Ray A, Hauser M. A dynamically stabilized recurrent neural network. Neural Process Lett. 2022;54(2):1195–209.

    Article  Google Scholar 

  35. El-Dabah MA, Hassan MH, Kamel S, Zawbaa HM. Robust parameters tuning of different power system stabilizers using a quantum artificial gorilla troops optimizer. IEEE Access. 2022;10:82560–79.

    Article  Google Scholar 

  36. Karthick R, Senthilselvi A, Meenalochini P, Senthil Pandi S. An optimal partitioning and floor planning for VLSI circuit design based on a hybrid bio-inspired whale optimization and adaptive bird swarm optimization (WO-ABSO) algorithm. J Circuits, Syst Comput. 2023;32(08):2350273.

    Article  Google Scholar 

  37. Karthick R, Dawood MS, Meenalochini P. Analysis of vital signs using remote photoplethysmography (RPPG). J Ambient Intell Humaniz Comput. 2023;14(12):16729–39.

    Article  Google Scholar 

  38. Meenalochini P, Karthick R, Sakthivel E. An Efficient Control Strategy for an Extended Switched Coupled Inductor Quasi-Z-Source Inverter for 3Φ Grid Connected System. J Circuits, SystComput (2023).

  39. Jasper Gnana Chandran J, Karthick R, Rajagopal R, Meenalochini P. Dual-channel capsule generative adversarial network optimized with golden eagle optimization for pediatric bone age assessment from hand X-ray image. Int J Pattern Recognit Artif Intell. 2023;37(02):2354001.

    Article  Google Scholar 

  40. Zhang M, Liu J, Wang Y, Piao Y, Yao S, Ji W, Li J, Lu H, Luo Z. Dynamic context-sensitive filtering network for video salient object detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 1553–1563),(2021).

  41. Zhang K, Ma C, Xu Y, Chen P, Du J. Feature extraction method based on adaptive and concise empirical wavelet transform and its applications in bearing fault diagnosis. Measurement. 2021;172: 108976.

    Article  Google Scholar 

  42. Loddo A, Buttau S, Di Ruberto C. Deep learning based pipelines for Alzheimer’s disease diagnosis: a comparative study and a novel deep-ensemble method. Comput Biol Med. 2022;141: 105032.

    Article  PubMed  Google Scholar 

  43. Rad EM, Azarnoosh M, Ghoshuni M, Khalilzadeh MM. Diagnosis of mild Alzheimer’s disease by EEG and ERP signals using linear and nonlinear classifiers. Biomed Signal Process Control. 2021;70: 103049.

    Article  Google Scholar 

  44. Rodrigues PM, Bispo BC, Garrett C, Alves D, Teixeira JP, Freitas D. Lacsogram: a new EEG tool to diagnose Alzheimer’s disease. IEEE J Biomed Health Inform. 2021;25(9):3384–95.

    Article  PubMed  Google Scholar 

  45. Safi MS, Safi SMM. Early detection of Alzheimer’s disease from EEG signals using Hjorth parameters. Biomed Signal Process Control. 2021;65: 102338.

    Article  Google Scholar 

  46. AlSharabi K, Salamah YB, Abdurraqeeb AM, Aljalal M, Alturki FA. EEG signal processing for Alzheimer’s disorders using discrete wavelet transform and machine learning approaches. IEEE Access. 2022;10:89781–97.

    Article  Google Scholar 

  47. Alvi AM, Siuly S, Wang H. Neurological abnormality detection from electroencephalography data: a review. Artif Intell Rev. 2022;55(3):2275–312.

    Article  Google Scholar 

  48. Kibriya H, Masood M, Nawaz M, Nazir T. Multiclass classification of brain tumors using a novel CNN architecture. Multimed Tools Appl. 2022;81(21):29847–63.

    Article  Google Scholar 

  49. Puri DV, Nalbalwar SL, Nandgaonkar AB, Gawande JP, Wagh A. Automatic detection of Alzheimer’s disease from EEG signals using low-complexity orthogonal wavelet filter banks. Biomed Signal Process Control. 2023;81: 104439.

    Article  Google Scholar 

  50. Rajagopal RK, Karthick R, Meenalochini P, Kalaichelvi T. Deep convolutional spiking neural network optimized with arithmetic optimization algorithm for lung disease detection using chest X-ray images. Biomed Signal Process Control. 2023;79: 104197.

    Article  Google Scholar 

  51. Karthick R, Senthilselvi A, Meenalochini P, Senthil Pandi S. Design and analysis of linear phase finite impulse response filter using water strider optimization algorithm in FPGA. Circuits, Syst Signal Process. 2022;41(9):5254–82.

    Article  Google Scholar 

  52. Karthick R, Sundararajan M. SPIDER-based out-of-order execution scheme for Ht-MPSOC. Int J Adv Intell Paradig. 2021;19(1):28–41.

    Google Scholar 

  53. Karthick R, Meenalochini P. Implementation of data cache block (DCB) in shared processor using field-programmable gate array (FPGA). Journal of the National Science Foundation of Sri Lanka. (2020);48(4).

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

Dr. G. Sudha—(Corresponding Author)—Conceptualization Methodology, Original draft preparation. Dr. N. Saravanan Supervision. Dr. M. Muthalakshmi –Supervision. Mrs. M. Birunda -Supervision.

Corresponding author

Correspondence to G. Sudha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sudha, G., Saravanan, N., Muthalakshmi, M. et al. Dynamically stabilized recurrent neural network optimized with Artificial Gorilla Troops espoused Alzheimer’s disorder detection using EEG signals. Health Inf Sci Syst 12, 25 (2024). https://doi.org/10.1007/s13755-024-00284-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13755-024-00284-9

Keywords

Navigation