Advertisement

Ballistocardiogram signal processing: a review

  • Ibrahim SadekEmail author
  • Jit Biswas
  • Bessam Abdulrazak
Review
  • 121 Downloads

Abstract

Across the world, healthcare costs are projected to continue to increase, and the pressure on the healthcare system is only going to grow in intensity as the rate of growth of elderly population increases in the coming decades. As an example, when people age one possible condition that they may experience is sleep-disordered breathing (SDB). SDB, better known as the obstructive sleep apnea (OSA) syndrome, and associated cardiovascular complications are among the most common clinical disorders. The gold-standard approach to accurately diagnose OSA, is polysomnography (PSG), a test that should be performed in a specialist sleep clinic and requires a complete overnight stay at the clinic. The PSG system can provide accurate and real-time data; however, it introduces several challenges such as complexity, invasiveness, excessive cost, and absence of privacy. Technological advancements in hardware and software enable noninvasive and unobtrusive sensing of vital signs. An alternative approach which may help diagnose OSA and other cardiovascular diseases is the ballistocardiography. The ballistocardiogram (BCG) signal captures the ballistic forces of the heart caused by the sudden ejection of blood into the great vessels with each heartbeat, breathing, and body movement. In recent years, BCG sensors such as polyvinylidene fluoride film-based sensors, electromechanical films, strain Gauges, hydraulic sensors, microbend fiber-optic sensors as well as fiber Bragg grating sensors have been integrated within ambient locations such as mattresses, pillows, chairs, beds, or even weighing scales, to capture BCG signals, and thereby measure vital signs. Analysis of the BCG signal is a challenging process, despite being a more convenient and comfortable method of vital signs monitoring. In practice, BCG sensors are placed under bed mattresses for sleep tracking, and hence several factors, e.g., mattress thickness, body movements, motion artifacts, bed-partners, etc. can deteriorate the signal. In this paper, we introduce the sensors that are being used for obtaining BCG signals. We also present an in-depth review of the signal processing methods as applied to the various sensors, to analyze the BCG signal and extract physiological parameters such heart rate and breathing rate, as well as determining sleep stages. Besides, we recommend which methods are more suitable for processing BCG signals due to their nonlinear and nonstationary characteristics.

Keywords

Ballistocardiogram Vital signs Nonintrusive monitoring Signal processing 

Notes

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

References

  1. 1.
    Pinheiro E, Postolache O, Girão P. Theory and developments in an unobtrusive cardiovascular system representation: ballistocardiography. Open Biomed Eng J. 2010;4:201.CrossRefGoogle Scholar
  2. 2.
    Starr I, Schroeder HA. Ballistocardiogram. II. normal standards, abnormalities commonly found in diseases of the heart and circulation, and their significance. J Clin Investig. 1940;19(3):437.CrossRefGoogle Scholar
  3. 3.
    Starr I, Rawson A, Schroeder H, Joseph N. Studies on the estimation of cardiac output in man, and of abnormalities in cardiac function, from the heart‘s recoil and the blood‘s impacts; the ballistocardiogram. Am J Physiol Leg Content. 1939;127(1):1–28.CrossRefGoogle Scholar
  4. 4.
    Eblen-Zajjur A. A simple ballistocardiographic system for a medical cardiovascular physiology course. Adv Physiol Edu. 2003;27(4):224–9.  https://doi.org/10.1152/advan.00025.2002, http://advan.physiology.org/content/27/4/224, http://advan.physiology.org/content/27/4/224.full.pdf.CrossRefGoogle Scholar
  5. 5.
    Vogt E, MacQuarrie D, Neary JP. Using ballistocardiography to measure cardiac performance: a brief review of its history and future significance. Clin Physiol Funct Imaging. 2012;32(6):415–20.  https://doi.org/10.1111/j.1475-097X.2012.01150.x.CrossRefGoogle Scholar
  6. 6.
    Giovangrandi L, Inan OT, Wiard RM, Etemadi M, Kovacs GTA. Ballistocardiography—a method worth revisiting. In: 2011 annual international conference of the IEEE engineering in medicine and biology society, 2011. pp. 4279–4282. https://doi.org/10.1109/IEMBS.2011.6091062.
  7. 7.
    Scarborough WR, Talbot SA, Braunstein JR, Rappaport MB, Dock W, Hamilton W, Smith JE, Nickerson JL, Starr I. Proposals for ballistocardiographic nomenclature and conventions: revised and extended. Circulation. 1956;14(3):435–50.CrossRefGoogle Scholar
  8. 8.
    Di Rienzo M, Vaini E, Lombardi P. An algorithm for the beat-to-beat assessment of cardiac mechanics during sleep on earth and in microgravity from the seismocardiogram. Sci Rep. 2017;7(1):15634.CrossRefGoogle Scholar
  9. 9.
    Inan OT, Baran Pouyan M, Javaid AQ, Dowling S, Etemadi M, Dorier A, Heller JA, Bicen AO, Roy S, De Marco T, Klein L. Novel wearable seismocardiography and machine learning algorithms can assess clinical status of heart failure patients. Circulation. 2018;11(1).  https://doi.org/10.1161/CIRCHEARTFAILURE.117.004313, http://circheartfailure.ahajournals.org/content/11/1/e004313, http://circheartfailure.ahajournals.org/content/11/1/e004313.full.pdf.
  10. 10.
    Hall T, Lie D, Nguyen T, Mayeda J, Lie P, Lopez J, Banister R. Non-contact sensor for long-term continuous vital signs monitoring: a review on intelligent phased-array doppler sensor design. Sensors. 2017;17(11):2632.CrossRefGoogle Scholar
  11. 11.
    Tadi MJ, Lehtonen E, Saraste A, Tuominen J, Koskinen J, Teräs M, Airaksinen J, Pänkäälä M, Koivisto T. Gyrocardiography: a new non-invasive monitoring method for the assessment of cardiac mechanics and the estimation of hemodynamic variables. Sci Rep. 2017;7(1):6823.CrossRefGoogle Scholar
  12. 12.
    Meriheinä U, Juppo M, Koivisto T, Pänäälä M, Sairanen K, Grönholm M. Heart monitoring system. US Patent App. 14/917,350, 2016.Google Scholar
  13. 13.
    Sadek I, Biswas J. Nonintrusive heart rate measurement using ballistocardiogram signals: a comparative study. Signal Image Video Process. 2019;13(3):475–82.  https://doi.org/10.1007/s11760-018-1372-z.CrossRefGoogle Scholar
  14. 14.
    Suliman A, Carlson C, Ade CJ, Warren S, Thompson DE. Performance comparison for ballistocardiogram peak detection methods. IEEE Access. 2019;7:53945–55.  https://doi.org/10.1109/ACCESS.2019.2912650.CrossRefGoogle Scholar
  15. 15.
    Sadek I, Biswas J, Abdulrazak B, Haihong Z, Mokhtari M. Continuous and unconstrained vital signs monitoring with ballistocardiogram sensors in headrest position. In: 2017 IEEE EMBS international conference on biomedical health informatics (BHI), pp 289–292, 2017.  https://doi.org/10.1109/BHI.2017.7897262.
  16. 16.
    Ashouri H, Hersek S, Inan OT. Universal pre-ejection period estimation using seismocardiography: quantifying the effects of sensor placement and regression algorithms. IEEE Sens J. 2018;18(4):1665–74.  https://doi.org/10.1109/JSEN.2017.2787628.CrossRefGoogle Scholar
  17. 17.
    Javaid AQ, Ashouri H, Dorier A, Etemadi M, Heller JA, Roy S, Inan OT. Quantifying and reducing motion artifacts in wearable seismocardiogram measurements during walking to assess left ventricular health. IEEE Trans Biomed Eng. 2017;64(6):1277–86.  https://doi.org/10.1109/TBME.2016.2600945.CrossRefGoogle Scholar
  18. 18.
    Xin Y, Guo C, Qi X, Tian H, Li X, Dai Q, Wang S, Wang C. Wearable and unconstrained systems based on pvdf sensors in physiological signals monitoring: a brief review. Ferroelectrics. 2016;500(1):291–300.CrossRefGoogle Scholar
  19. 19.
    Hwang SH, Lee HJ, Yoon HN, Jung DW, Lee YJG, Lee YJ, Jeong DU, Park KS. Unconstrained sleep apnea monitoring using polyvinylidene fluoride film-based sensor. IEEE Trans Biomed Eng. 2014;61(7):2125–34.  https://doi.org/10.1109/TBME.2014.2314452.CrossRefGoogle Scholar
  20. 20.
    Wang F, Tanaka M, Chonan S. Development of a pvdf piezopolymer sensor for unconstrained in-sleep cardiorespiratory monitoring. J Intell Mater Syst Struct. 2003;14(3):185–90.  https://doi.org/10.1177/1045389X03014003006.CrossRefGoogle Scholar
  21. 21.
    Wang F, Zou Y, Tanaka M, Matsuda T, Chonan S. Unconstrained cardiorespiratory monitor for premature infants. Int J Appl Electromagn Mech. 2007;25(1–4):469–75.CrossRefGoogle Scholar
  22. 22.
    Niizeki K, Nishidate I, Uchida K, Kuwahara M. Unconstrained cardiorespiratory and body movement monitoring system for home care. Med Biol Eng Comput. 2005;43(6):716–24.  https://doi.org/10.1007/BF02430948.CrossRefGoogle Scholar
  23. 23.
    Paalasmaa J, Ranta M. Detecting heartbeats in the ballistocardiogram with clustering. In: Proceedings of the ICML/UAI/COLT 2008 workshop on machine learning for health-care applications, Helsinki, Finland, vol. 9, 2008.Google Scholar
  24. 24.
    Paalasmaa J, Waris M, Toivonen H, Leppäkorpi L, Partinen M. Unobtrusive online monitoring of sleep at home. In: 2012 annual international conference of the IEEE engineering in medicine and biology society, pp. 3784–3788, 2012.  https://doi.org/10.1109/EMBC.2012.6346791.
  25. 25.
    Paalasmaa J, Toivonen H, Partinen M. Adaptive heartbeat modeling for beat-to-beat heart rate measurement in ballistocardiograms. IEEE J Biomed Health Inform. 2015;19(6):1945–52.  https://doi.org/10.1109/JBHI.2014.2314144.CrossRefGoogle Scholar
  26. 26.
    Chen W, Zhu X, Nemoto T. A new sensory device and optimal position for monitoring HR/RR during sleep. Springer, Berlin, pp. 126–129, 2009.  https://doi.org/10.1007/978-3-642-03885-3_36.Google Scholar
  27. 27.
    Pinheiro E, Postolache O, Girão P. Study on ballistocardiogram acquisition in a moving wheelchair with embedded sensors. Metrol Meas Syst. 2012;19(4):739–50.CrossRefGoogle Scholar
  28. 28.
    Kortelainen JM, van Gils M, Pärkkä J, Multichannel bed pressure sensor for sleep monitoring. In: 2012 computing in cardiology, pp. 313–316, 2012.Google Scholar
  29. 29.
    Guerrero G, Kortelainen JM, Palacios E, Bianchi AM, Tachino G, Tenhunen M, Méndez MO, van Gils M. Detection of sleep-disordered breating with pressure bed sensor. In: 2013 35th annual international conference of the IEEE engineering in medicine and biology society (EMBC), pp. 1342–1345, 2013.  https://doi.org/10.1109/EMBC.2013.6609757.
  30. 30.
    Brüser C, Kortelainen JM, Winter S, Tenhunen M, Pärkkä J, Leonhardt S. Improvement of force-sensor-based heart rate estimation using multichannel data fusion. IEEE J Biomed Health Inform. 2015;19(1):227–35.  https://doi.org/10.1109/JBHI.2014.2311582.CrossRefGoogle Scholar
  31. 31.
    Martín-Yebra A, Landreani F, Casellato C, Pavan E, Frigo C, Migeotte PF, Caiani EG. Studying heart rate variability from ballistocardiography acquired by force platform: comparison with conventional ECG. In: 2015 computing in cardiology conference (CinC), pp 929–932, 2015.  https://doi.org/10.1109/CIC.2015.7411064.
  32. 32.
    Katz Y, Karasik R, Shinar Z. Contact-free piezo electric sensor used for real-time analysis of inter beat interval series. In: 2016 computing in cardiology conference (CinC), pp. 769–772, 2016.  https://doi.org/10.23919/CIC.2016.7868856.
  33. 33.
    Sela I, Shinar Z, Tavakolian K. Measuring left ventricular ejection time using under-the-mattress sensor. In: 2016 computing in cardiology conference (CinC), pp. 665–668, 2016.  https://doi.org/10.23919/CIC.2016.7868830.
  34. 34.
    Alvarado-Serrano C, Luna-Lozano PS, Pallàs-Areny R. An algorithm for beat-to-beat heart rate detection from the bcg based on the continuous spline wavelet transform. Biomed Signal Process Control 2016;27(Supplement C):96–102.  https://doi.org/10.1016/j.bspc.2016.02.002, http://www.sciencedirect.com/science/article/pii/S1746809416300143.CrossRefGoogle Scholar
  35. 35.
    Liu M, Jiang F, Jiang H, Ye S, Chen H. Low-power, noninvasive measurement system for wearable ballistocardiography in sitting and standing positions. Comput Ind 2017;91(Supplement C):24–32.  https://doi.org/10.1016/j.compind.2017.05.005, http://www.sciencedirect.com/science/article/pii/S0166361516303074.CrossRefGoogle Scholar
  36. 36.
    Choe ST, Cho WD. Simplified real-time heartbeat detection in ballistocardiography using a dispersion-maximum method. Biomed Res. 2017;28(9):3974–85.Google Scholar
  37. 37.
    Alametsä J, Värri A, Koivuluoma M, Barna L. The potential of emfi sensors in heart activity monitoring. In: 2nd OpenECG workshop integration of the ECG into the EHR and interoperability of ECG device systems, Berlin, Germany, 2004.Google Scholar
  38. 38.
    Koivistoinen T, Junnila S, Varri A, Koobi T. A new method for measuring the ballistocardiogram using emfi sensors in a normal chair. In: The 26th annual international conference of the IEEE engineering in medicine and biology society, vol 1, pp. 2026–2029, 2004.  https://doi.org/10.1109/IEMBS.2004.1403596.
  39. 39.
    Junnila S, Akhbardeh A, Barna LC, Defee I, Varri A. A wireless ballistocardiographic chair. In: 2006 international conference of the IEEE engineering in medicine and biology society, pp. 5932–5935, 2006.  https://doi.org/10.1109/IEMBS.2006.259814.
  40. 40.
    Junnila S, Akhbardeh A, Varri A, Koivistoinen T. An emfi-film sensor based ballistocardiographic chair: performance and cycle extraction method. In: IEEE workshop on signal processing systems design and implementation. 2005;2005:373–7.  https://doi.org/10.1109/SIPS.2005.1579896.
  41. 41.
    Kortelainen JM, Virkkala J. Fft averaging of multichannel bcg signals from bed mattress sensor to improve estimation of heart beat interval. In: 2007 29th annual international conference of the IEEE engineering in medicine and biology society, pp. 6685–6688, 2007.  https://doi.org/10.1109/IEMBS.2007.4353894.
  42. 42.
    Aubert XL, Brauers A. Estimation of vital signs in bed from a single unobtrusive mechanical sensor: algorithms and real-life evaluation. In: 2008 30th annual international conference of the IEEE engineering in medicine and biology society, pp. 4744–4747, 2008.  https://doi.org/10.1109/IEMBS.2008.4650273.
  43. 43.
    Karki S, Lekkala J. Film-type transducer materials pvdf and emfi in the measurement of heart and respiration rates. In: 2008 30th annual international conference of the IEEE engineering in medicine and biology society, pp. 530–533, 2008.  https://doi.org/10.1109/IEMBS.2008.4649207.
  44. 44.
    Kärki S, Lekkala J. A new method to measure heart rate with emfi and pvdf materials. J Med Eng Technol. 2009;33(7):551–8.  https://doi.org/10.1080/03091900903067424.CrossRefGoogle Scholar
  45. 45.
    Pinheiro E, Postolache O, Girão P. Blood pressure and heart rate variabilities estimation using ballistocardiography. In: Proceedings of the 7th conference on telecom, pp. 125–128, 2009.Google Scholar
  46. 46.
    Pinheiro EC, Postolache OA, Girão PS. Online heart rate estimation in unstable ballistocardiographic records. In: 2010 annual international conference of the IEEE engineering in medicine and biology, pp. 939–942, 2010.  https://doi.org/10.1109/IEMBS.2010.5627539.
  47. 47.
    Brüser C, Winter S, Leonhardt S. Robust inter-beat interval estimation in cardiac vibration signals. Physiol Meas 2013;34(2):123. http://stacks.iop.org/0967-3334/34/i=2/a=123.CrossRefGoogle Scholar
  48. 48.
    Zink MD, Brüser C, Winnersbach P, Napp A, Leonhardt S, Marx N, Schauerte P, Mischke K. Heartbeat cycle length detection by a ballistocardiographic sensor in atrial fibrillation and sinus rhythm. BioMed Res Int 2015;2015(19):1–10.Google Scholar
  49. 49.
    Zink MD, Brüser C, Stüben BO, Napp A, Stöhr R, Leonhardt S, Marx N, Mischke K, Schulz JB, Schiefer J. Unobtrusive nocturnal heartbeat monitoring by a ballistocardiographic sensor in patients with sleep disordered breathing. Sci Rep. 2017;7(1):13175.CrossRefGoogle Scholar
  50. 50.
    Pino EJ, Chávez JAP, Aqueveque P, Noninvasive ambulatory measurement system of cardiac activity. In: 2015 37th annual international conference of the IEEE engineering in medicine and biology society (EMBC), pp. 7622–7625, 2015.  https://doi.org/10.1109/EMBC.2015.7320157.
  51. 51.
    Pino EJ, Larsen C, Chavez J, Aqueveque P. Non-invasive bcg monitoring for non-traditional settings. In: 2016 38th annual international conference of the IEEE engineering in medicine and biology society (EMBC), pp. 4776–4779, 2016.  https://doi.org/10.1109/EMBC.2016.7591795.
  52. 52.
    Alametsä J, Viik J. Twelve years follow-up of ballistocardiography. Springer, Singapore, pp. 1117–1120, 2018.  https://doi.org/10.1007/978-981-10-5122-7_279.Google Scholar
  53. 53.
    Chow P, Nagendra G, Abisheganaden J, Wang YT. Respiratory monitoring using an air-mattress system. Physiol Meas 2000;21(3):345. http://stacks.iop.org/0967-3334/21/i=3/a=301.CrossRefGoogle Scholar
  54. 54.
    Watanabe T, Watanabe K. Noncontact method for sleep stage estimation. IEEE Trans Biomed Eng. 2004;51(10):1735–48.  https://doi.org/10.1109/TBME.2004.828037.CrossRefGoogle Scholar
  55. 55.
    Watanabe K, Watanabe T, Watanabe H, Ando H, Ishikawa T, Kobayashi K. Noninvasive measurement of heartbeat, respiration, snoring and body movements of a subject in bed via a pneumatic method. IEEE Trans Biomed Eng. 2005;52(12):2100–7.  https://doi.org/10.1109/TBME.2005.857637.CrossRefGoogle Scholar
  56. 56.
    Kurihara Y, Watanabe K. Development of unconstrained heartbeat and respiration measurement system with pneumatic flow. IEEE Trans Biomed Circuits Syst. 2012;6(6):596–604.  https://doi.org/10.1109/TBCAS.2012.2189007.CrossRefGoogle Scholar
  57. 57.
    Chee Y, Han J, Youn J, Park K. Air mattress sensor system with balancing tube for unconstrained measurement of respiration and heart beat movements. Physiol Meas 2005;26(4):413, http://stacks.iop.org/0967-3334/26/i=4/a=007.CrossRefGoogle Scholar
  58. 58.
    Shin J, Chee Y, Park K. Long-term sleep monitoring system and long-term sleep parameters using unconstrained method. In: International special topic conference on information technology in BME, Ioannina-Epirus, Greece, 2006.Google Scholar
  59. 59.
    Shin JH, Chee YJ, Jeong DU, Park KS. Nonconstrained sleep monitoring system and algorithms using air-mattress with balancing tube method. IEEE Trans Inform Technol Biomed. 2010;14(1):147–56.  https://doi.org/10.1109/TITB.2009.2034011.CrossRefGoogle Scholar
  60. 60.
    Brink M, Müller CH, Schierz C. Contact-free measurement of heart rate, respiration rate, and body movements during sleep. Behav Res Methods 2006;38(3):511–21.  https://doi.org/10.3758/BF03192806,  https://doi.org/10.3758/BF03192806.
  61. 61.
    Inan OT, Etemadi M, Wiard RM, Giovangrandi L, Kovacs GTA. Robust ballistocardiogram acquisition for home monitoring. Physiol Meas 2009;30(2):169, http://stacks.iop.org/0967-3334/30/i=2/a=005.CrossRefGoogle Scholar
  62. 62.
    Inan OT, Etemadi M, Widrow B, Kovacs GTA. Adaptive cancellation of floor vibrations in standing ballistocardiogram measurements using a seismic sensor as a noise reference. IEEE Trans Biomed Eng. 2010a;57(3):722–7.  https://doi.org/10.1109/TBME.2009.2018831.CrossRefGoogle Scholar
  63. 63.
    Inan OT, Kovacs GTA, Giovangrandi L. Evaluating the lower-body electromyogram signal acquired from the feet as a noise reference for standing ballistocardiogram measurements. IEEE Trans Inform Technol Biomed. 2010b;14(5):1188–96.  https://doi.org/10.1109/TITB.2010.2044185.CrossRefGoogle Scholar
  64. 64.
    Wiard RM, Inan OT, Argyres B, Etemadi M, Kovacs GTA, Giovangrandi L. Automatic detection of motion artifacts in the ballistocardiogram measured on a modified bathroom scale. Med Biol Eng Comput. 2011;49(2):213–20.  https://doi.org/10.1007/s11517-010-0722-y.CrossRefGoogle Scholar
  65. 65.
    Bruser C, Stadlthanner K, de Waele S, Leonhardt S. Adaptive beat-to-beat heart rate estimation in ballistocardiograms. IEEE Trans Inform Technol Biomed. 2011;15(5):778–86.  https://doi.org/10.1109/TITB.2011.2128337.CrossRefGoogle Scholar
  66. 66.
    Nukaya S, Shino T, Kurihara Y, Watanabe K, Tanaka H. Noninvasive bed sensing of human biosignals via piezoceramic devices sandwiched between the floor and bed. IEEE Sens J. 2012;12(3):431–8.  https://doi.org/10.1109/JSEN.2010.2091681.CrossRefGoogle Scholar
  67. 67.
    Vehkaoja A, Rajala S, Kumpulainen P, Lekkala J. Correlation approach for the detection of the heartbeat intervals using force sensors placed under the bed posts. J Med Eng Technol. 2013;37(5):327–33.  https://doi.org/10.3109/03091902.2013.807523.CrossRefGoogle Scholar
  68. 68.
    Lee WK, Yoon H, Han C, Joo KM, Park KS. Physiological signal monitoring bed for infants based on load-cell sensors. Sensors. 2016;16(3):409.CrossRefGoogle Scholar
  69. 69.
    Heise D, Rosales L, Skubic M, Devaney MJ. Refinement and evaluation of a hydraulic bed sensor. In: 2011 annual international conference of the IEEE engineering in medicine and biology society, pp. 4356–4360, 2011.  https://doi.org/10.1109/IEMBS.2011.6091081.
  70. 70.
    Heise D, Skubic M. Monitoring pulse and respiration with a non-invasive hydraulic bed sensor. In: 2010 annual international conference of the IEEE engineering in medicine and biology, pp. 2119–2123, 2010.  https://doi.org/10.1109/IEMBS.2010.5627219.
  71. 71.
    Rosales L, Skubic M, Heise D, Devaney MJ, Schaumburg M. Heartbeat detection from a hydraulic bed sensor using a clustering approach. In: 2012 annual international conference of the IEEE engineering in medicine and biology society, pp. 2383–2387, 2012.  https://doi.org/10.1109/EMBC.2012.6346443.
  72. 72.
    Su BY, Ho KC, Skubic M, Rosales L. Pulse rate estimation using hydraulic bed sensor. In: 2012 annual international conference of the IEEE engineering in medicine and biology society, pp. 2587–2590, 2012.  https://doi.org/10.1109/EMBC.2012.6346493.
  73. 73.
    Heise D, Rosales L, Sheahen M, Su BY, Skubic M. Non-invasive measurement of heartbeat with a hydraulic bed sensor progress, challenges, and opportunities. In: 2013 IEEE international instrumentation and measurement technology conference (I2MTC), pp. 397–402, 2013.  https://doi.org/10.1109/I2MTC.2013.6555447.
  74. 74.
    Lydon K, Su BY, Rosales L, Enayati M, Ho KC, Rantz M, Skubic M. Robust heartbeat detection from in-home ballistocardiogram signals of older adults using a bed sensor. In: 2015 37th annual international conference of the IEEE engineering in medicine and biology society (EMBC), pp. 7175–7179, 2015.  https://doi.org/10.1109/EMBC.2015.7320047.
  75. 75.
    Jiao C, Lyons P, Zare A, Rosales L, Skubic M. Heart beat characterization from ballistocardiogram signals using extended functions of multiple instances. In: 2016 38th annual international conference of the IEEE engineering in medicine and biology society (EMBC), pp. 756–760, 2016.  https://doi.org/10.1109/EMBC.2016.7590812.
  76. 76.
    Rosales L, Su BY, Skubic M, Ho K. Heart rate monitoring using hydraulic bed sensor ballistocardiogram. J Ambient Intell Smart Environ. 2017;9(2):193–207.CrossRefGoogle Scholar
  77. 77.
    Berthold JW. Historical review of microbend fiber-optic sensors. J Lightwave Technol. 1995;13(7):1193–9.  https://doi.org/10.1109/50.400697.CrossRefGoogle Scholar
  78. 78.
    Feng Hu H, Jia Sun S, Ging Lv R, Zhao Y. Design and experiment of an optical fiber micro bend sensor for respiration monitoring. Sens Actuators A. 251(Supplement C):126–33, 2016.  https://doi.org/10.1016/j.sna.2016.10.013, http://www.sciencedirect.com/science/article/pii/S0924424716306720.CrossRefGoogle Scholar
  79. 79.
    Lagakos N, Cole JH, Bucaro JA. Microbend fiber-optic sensor. Appl Opt 1987;26(11):2171–80.  https://doi.org/10.1364/AO.26.002171, http://ao.osa.org/abstract.cfm?URI=ao-26-11-2171.CrossRefGoogle Scholar
  80. 80.
    Luo F, Liu J, Ma N, Morse T. A fiber optic microbend sensor for distributed sensing application in the structural strain monitoring. Sens Actuators A 1999;75(1):41–4.  https://doi.org/10.1016/S0924-4247(99)00043-6, http://www.sciencedirect.com/science/article/pii/S0924424799000436.CrossRefGoogle Scholar
  81. 81.
    Moghadas AA, Shadaram M. Fiber bragg grating sensor for fault detection in radial and network transmission lines. Sensors. 2010;10(10):9407–23.  https://doi.org/10.3390/s101009407, http://www.mdpi.com/1424-8220/10/10/9407.CrossRefGoogle Scholar
  82. 82.
    Poeggel S, Tosi D, Duraibabu D, Leen G, McGrath D, Lewis E. Optical fibre pressure sensors in medical applications. Sensors. 2015;15(7):17115–48.  https://doi.org/10.3390/s150717115, http://www.mdpi.com/1424-8220/15/7/17115.CrossRefGoogle Scholar
  83. 83.
    Díaz CA, Leitão C, Marques CA, Domingues MF, Alberto N, Pontes MJ, Frizera A, Ribeiro M, André PS, Antunes PF. Low-cost interrogation technique for dynamic measurements with fbg-based devices. Sensors. 2017;17(10):2414.CrossRefGoogle Scholar
  84. 84.
    Sadek I, Mohktari M. Nonintrusive remote monitoring of sleep in home-based situation. J Med Syst. 2018;42(4):64.  https://doi.org/10.1007/s10916-018-0917-6.CrossRefGoogle Scholar
  85. 85.
    Chen Z, Teo JT, Ng SH, Yang X. Portable fiber optic ballistocardiogram sensor for home use. In: Proceedings of SPIE, vol 8218, pp 8218- 8218-7, 2012.  https://doi.org/10.1117/12.909768.
  86. 86.
    Chen Z, Teo JT, Yang X. In-bed fibre optic breathing and movement sensor for non-intrusive monitoring. In: Proceeding of SPIE, vol 7173, pp. 7173–7173-6, 2009.  https://doi.org/10.1117/12.807924.
  87. 87.
    Deepu CJ, Chen Z, Teo JT, Ng SH, Yang X, Lian Y. A smart cushion for real-time heart rate monitoring. In: 2012 IEEE biomedical circuits and systems conference (BioCAS), pp. 53–56, 2012.  https://doi.org/10.1109/BioCAS.2012.6418512.
  88. 88.
    Chen Z, Yang X, Teo JT, Ng SH. Noninvasive monitoring of blood pressure using optical ballistocardiography and photoplethysmograph approaches. In: 2013 35th annual international conference of the IEEE engineering in medicine and biology society (EMBC), pp 2425–2428, 2013.  https://doi.org/10.1109/EMBC.2013.6610029.
  89. 89.
    Lau D, Chen Z, Teo JT, Ng SH, Rumpel H, Lian Y, Yang H, Kei PL. Intensity-modulated microbend fiber optic sensor for respiratory monitoring and gating during MRI. IEEE Trans Biomed Eng. 2013;60(9):2655–62.  https://doi.org/10.1109/TBME.2013.2262150.CrossRefGoogle Scholar
  90. 90.
    Chen Z, Lau D, Teo JT, Ng SH, Yang X, Kei PL. Simultaneous measurement of breathing rate and heart rate using a microbend multimode fiber optic sensor. J Biomed Opt. 2014;19(5):057001.  https://doi.org/10.1117/1.JBO.19.5.057001.CrossRefGoogle Scholar
  91. 91.
    Dziuda Ł, Krej M, Skibniewski FW. Fiber bragg grating strain sensor incorporated to monitor patient vital signs during MRI. IEEE Sens J. 2013;13(12):4986–91.  https://doi.org/10.1109/JSEN.2013.2279160.CrossRefGoogle Scholar
  92. 92.
    Dziuda Ł, Skibniewski FW. A new approach to ballistocardiographic measurements using fibre bragg grating-based sensors. Biocybern Biomed Eng. 2014;34(2):101–16.  https://doi.org/10.1016/j.bbe.2014.02.001, http://www.sciencedirect.com/science/article/pii/S0208521614000187.CrossRefGoogle Scholar
  93. 93.
    Dziuda Ł, Skibniewski FW, Krej M, Baran PM. Fiber bragg grating-based sensor for monitoring respiration and heart activity during magnetic resonance imaging examinations. J Biomed Opt. 2013;18(5):057006.  https://doi.org/10.1117/1.JBO.18.5.057006.CrossRefGoogle Scholar
  94. 94.
    Dziuda Ł. Fiber-optic sensors for monitoring patient physiological parameters: a review of applicable technologies and relevance to use during magnetic resonance imaging procedures. J Biomed Opt 20:20–20-23, 2015.  https://doi.org/10.1117/1.JBO.20.1.010901.CrossRefGoogle Scholar
  95. 95.
    Krej M, Dziuda Ł, Skibniewski FW. A method of detecting heartbeat locations in the ballistocardiographic signal from the fiber-optic vital signs sensor. IEEE J Biomed Health Inform. 2015;19(4):1443–50.  https://doi.org/10.1109/JBHI.2015.2392796.CrossRefGoogle Scholar
  96. 96.
    Zhu Y, Zhang H, Jayachandran M, Ng AK, Biswas J, Chen Z. Ballistocardiography with fiber optic sensor in headrest position: A feasibility study and a new processing algorithm. In: 2013 35th annual international conference of the IEEE engineering in medicine and biology society (EMBC), pp 5203–5206, 2013.  https://doi.org/10.1109/EMBC.2013.6610721.
  97. 97.
    Chen Z, Teo JT, Ng SH, Yang X, Zhou B, Zhang Y, Loo HP, Zhang H, Thong M. Monitoring respiration and cardiac activity during sleep using microbend fiber sensor: a clinical study and new algorithm. In: 2014 36th annual international conference of the IEEE engineering in medicine and biology society, pp. 5377–5380, 2014.  https://doi.org/10.1109/EMBC.2014.6944841.
  98. 98.
    Zhu Y, Fook VFS, Jianzhong EH, Maniyeri J, Guan C, Zhang H, Jiliang EP, Biswas J. Heart rate estimation from fbg sensors using cepstrum analysis and sensor fusion. In: 2014 36th annual international conference of the IEEE engineering in medicine and biology society, pp. 5365–5368, 2014.  https://doi.org/10.1109/EMBC.2014.6944838.
  99. 99.
    Zhu Y, Maniyeri J, Fook VFS, Zhang H. Estimating respiratory rate from fbg optical sensors by using signal quality measurement. In: 2015 37th annual international conference of the IEEE engineering in medicine and biology society (EMBC), pp. 853–856, 2015.  https://doi.org/10.1109/EMBC.2015.7318496.
  100. 100.
    Fajkus M, Nedoma J, Martinek R, Vasinek V, Nazeran H, Siska P. A non-invasive multichannel hybrid fiber-optic sensor system for vital sign monitoring. Sensors. 2017;17(1):111.CrossRefGoogle Scholar
  101. 101.
    Fajkus M, Nedoma J, Martinek R, Walendziuk W. Comparison of the fbg sensor encapsulated into pdms and fbg sensor glued on the plexiglass pad for respiratory and heart rate monitoring. In: Photonics applications in astronomy, communications, industry, and high energy physics experiments 2017, International Society for Optics and Photonics, vol 10445, p. 104450B, 2017.Google Scholar
  102. 102.
    Chethana K, Guru Prasad A, Omkar S, Asokan S. Fiber bragg grating sensor based device for simultaneous measurement of respiratory and cardiac activities. J Biophotonics. 2017;10(2):278–85.CrossRefGoogle Scholar
  103. 103.
    Nedoma J, Fajkus M, Martinek R, Kepak S, Cubik J, Zabka S, Vasinek V. Comparison of bcg, pcg and ecg signals in application of heart rate monitoring of the human body. In: 40th international conference on telecommunications and signal processing (TSP), 2017. IEEE, pp. 420–424, 2017.Google Scholar
  104. 104.
    Zaunseder S, Henning A, Wedekind D, Trumpp A, Malberg H. Unobtrusive acquisition of cardiorespiratory signals. Somnologie. 2017;21(2):93–100.  https://doi.org/10.1007/s11818-017-0112-x.CrossRefGoogle Scholar
  105. 105.
    Tal A, Shinar Z, Shaki D, Codish S, Goldbart A. Validation of contact-free sleep monitoring device with comparison to polysomnography. J Clin Sleep Med. 2017;13(3):517–22.CrossRefGoogle Scholar
  106. 106.
    Davidovich MLY, Karasik R, Tal A, Shinar Z. Sleep apnea screening with a contact-free under-the-mattress sensor. In: 2016 computing in cardiology conference (CinC), pp. 849–852, 2016.  https://doi.org/10.23919/CIC.2016.7868876.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.ST Engineering Electronics-SUTD Cyber Security LaboratorySingapore University of Technology and Design (SUTD)SingaporeSingapore
  2. 2.iTrust - Center for Research in Cyber SecuritySingapore University of Technology and Design (SUTD)SingaporeSingapore
  3. 3.Département d’Informatique, Faculté des SciencesUniversité de Sherbrooke (UdeS)SherbrookeCanada

Personalised recommendations