Urate crystal deposition, prevention and various diagnosis techniques of GOUT arthritis disease: a comprehensive review

  • Panchatcharam Parthasarathy
  • S. Vivekanandan
Part of the following topical collections:
  1. Special Issue on Emerging Applications of Internet of Medical Things in Personalised Healthcare System


Gout is described as difficult in joint sore, uttermost ordinarily in the principal metatarsophalangeal joint, attend from formation of urate monosodium crystallization in a joint space. Analysis might be affirmed by recognizable proof of urate monosodium precious stones in synovial liquid of the influenced joint. There has been expanded enthusiasm for gout in common scholarly and clinical practice settings. The pervasiveness of both hyperuricemia and gout has ascended as most recent decade of time in created nations and in this way weight of gout as expanded. The relationship of hyperuricemia and gout with cardio results for chance of added advantages in mediation on hyperuricemia was featured in this audit. Imaging procedures have ended up being helpful for location of urate statement, even before the primary clinical indications, empowering the assessment of the degree of testimony and giving target estimation of precious stone exhaustion amid urate-bringing down treatment. In advancement, the indication defines the pre diagnostic of gout and associated commodities is advised to prevent the inflammation, that image procedures will assess the weight on statement as well reaction to urinary bringing down clinical procedure in chose patients, lastly amongst last key goal on social insurance for clinical evaluation with gout is to totally project urate gem stores. In spite of the fact that the formal determination is defined with arthrocentesis and resulting examination, CT and ultrasound discoveries on addition of evaluation and execution of infection administration. The standard therapy methodology is available for the patients and whose disease is refractory to standard therapy.


Gout arthritis Hyperuricemia Joint inflammation Uric acid Mono-sodium urate crystal 



  1. 1.
    Dalbeth N, Merriman TR, Stamp LK. Gout. Lancet. 2016;388(10055):2039–52.CrossRefGoogle Scholar
  2. 2.
    Emmerson BT. The management of gout. N Engl J Med. 1996;334(7):445–51.CrossRefGoogle Scholar
  3. 3.
    Pascual E, Sivera F. Time required for disappearance of urate crystals from synovial fluid after successful hypouricaemic treatment relates to the duration of gout. Ann Rheum Dis. 2007;66(8):1056–8.CrossRefGoogle Scholar
  4. 4.
    Singh JA. Challenges faced by patients in gout treatment: a qualitative study. J Clin Rheumatol. 2014;20(3):172–4.CrossRefGoogle Scholar
  5. 5.
    Kuo CF, Grainge MJ, Zhang W, Doherty M. Global epidemiology of gout: prevalence, incidence and risk factors. Nat Rev Rheumatol. 2015;11(11):649–62.CrossRefGoogle Scholar
  6. 6.
    McCarty DJ, Hollander JL. Identification of urate crystals in gouty synovial fluid. Ann Intern Med. 1961;54:452–60.CrossRefGoogle Scholar
  7. 7.
    Mandal AK, Mount DB. The molecular physiology of uric acid homeostasis. Annu Rev Physiol. 2015;77:323–45.CrossRefGoogle Scholar
  8. 8.
    Kamei K, Konta T, Hirayama A, Suzuki K, Ichikawa K, Fujimoto S. A slight increase within the normal range of serum uric acid and the decline in renal function: associations in a community-based population. Nephrol Dial Transpl. 2014;29(12):2286–92.CrossRefGoogle Scholar
  9. 9.
    Torres RJ, Puig JG. Hypoxanthine-guanine phosophoribosyltransferase (HPRT) deficiency: Lesch-Nyhan syndrome. Orphanet J Rare Dis. 2007;2:48.CrossRefGoogle Scholar
  10. 10.
    Reginato AM, Olsen BR. Genetics and experimental models of crystal-induced arthritis. Lessons learned from mice and men: is it crystal clear? Curr Opin Rheumatol. 2007;19(2):134–45.CrossRefGoogle Scholar
  11. 11.
    Kanbara A, Seyama I. Effect of urine pH on uric acid excretion by manipulating food materials. Nucleosides Nucleotides Nucleic Acids. 2011;30(12):1066–71.CrossRefGoogle Scholar
  12. 12.
    Towiwat P, Li ZG. The association of vitamin C, alcohol, coffee, tea, milk and yogurt with uric acid and gout. Int J Rheum Dis. 2015;18(5):495–501.CrossRefGoogle Scholar
  13. 13.
    Mahmoud HH, Leverger G, Patte C, Harvey E, Lascombes F. Advances in the management of malignancy-associated hyperuricaemia. Br J Cancer. 1998;77(Suppl 4):18–20.CrossRefGoogle Scholar
  14. 14.
    Emmerson B. Hyperlipidaemia in hyperuricaemia and gout. Ann Rheum Dis. 1998;57(9):509–10.CrossRefGoogle Scholar
  15. 15.
    Bedir A, Topbas M, Tanyeri F, Alvur M, Arik N. Leptin might be a regulator of serum uric acid concentrations in humans. Jpn Heart J. 2003;44(4):527–36.CrossRefGoogle Scholar
  16. 16.
    Dessein PH, Shipton EA, Stanwix AE, Joffe BI, Ramokgadi J. Beneficial effects of weight loss associated with moderate calorie/carbohydrate restriction, and increased proportional intake of protein and unsaturated fat on serum urate and lipoprotein levels in gout: a pilot study. Ann Rheum Dis. 2000;59(7):539–43.CrossRefGoogle Scholar
  17. 17.
    Ichida K, Matsuo H, Takada T, Nakayama A, Murakami K, Shimizu T. Decreased extra-renal urate excretion is a common cause of hyperuricemia. Nat Commun. 2012;3:764.CrossRefGoogle Scholar
  18. 18.
    Enomoto A, Endou H. Roles of organic anion transporters (OATs) and a urate transporter (URAT1) in the pathophysiology of human disease. Clin Exp Nephrol. 2005;9(3):195–205.CrossRefGoogle Scholar
  19. 19.
    Bobulescu IA, Moe OW. Renal transport of uric acid: evolving concepts and uncertainties. Adv Chronic Kidney Dis. 2012;19(6):358–71.CrossRefGoogle Scholar
  20. 20.
    Han J, Liu Y, Rao F, Nievergelt CM, O’Connor DT, Wang X. Common genetic variants of the human uromodulin gene regulate transcription and predict plasma uric acid levels. Kidney Int. 2013;83(4):733–40.CrossRefGoogle Scholar
  21. 21.
    Parthasarathy P, Vivekanandan S. A comprehensive review on thin film-based nano-biosensor for uric acid determination: arthritis diagnosis. World Rev Sci Technol Sustain Dev. 2018;14(1):52–71.CrossRefGoogle Scholar
  22. 22.
    Cho SK, Kim S, Chung JY, Jee SH. Discovery of URAT1 SNPs and association between serum uric acid levels and URAT1. BMJ Open. 2015;5(11):e009360.CrossRefGoogle Scholar
  23. 23.
    Tan PK, Ostertag TM, Miner JN. Mechanism of high affinity inhibition of the human urate transporter URAT1. Sci Rep. 2016;6:34995.CrossRefGoogle Scholar
  24. 24.
    Phipps-Green AJ, Merriman ME, Topless R, Altaf S, Montgomery GW, Franklin C. Twenty-eight loci that influence serum urate levels: analysis of association with gout. Ann Rheum Dis. 2016;75(1):124–30.CrossRefGoogle Scholar
  25. 25.
    Parthasarathy P, Vivekanandan S. A numerical modelling of an amperometric-enzymatic based uric acid biosensor for GOUT arthritis diseases. Inform Med Unlocked. 2018. Scholar
  26. 26.
    Kolz M, Johnson T, Sanna S, Teumer A, Vitart V, Perola M. Meta-analysis of 28,141 individuals identifies common variants within five new loci that influence uric acid concentrations. PLoS Genet. 2009;5(6):e1000504.CrossRefGoogle Scholar
  27. 27.
    Liu R, O’Connell M, Johnson K, Pritzker K, Mackman N, Terkeltaub R. Extracellular signal-regulated kinase 1/extracellular signal-regulated kinase 2 mitogen-activated protein kinase signaling and activation of activator protein 1 and nuclear factor kappaB transcription factors play central roles in interleukin-8 expression stimulated by monosodium urate monohydrate and calcium pyrophosphate crystals in monocytic cells. Arthritis Rheum. 2000;43(5):1145–55.CrossRefGoogle Scholar
  28. 28.
    Cronstein BN, Sunkureddi P. Mechanistic aspects of inflammation and clinical management of inflammation in acute gouty arthritis. J Clin Rheumatol. 2013;19(1):19–29.Google Scholar
  29. 29.
    Parthasarathy P, Vivekanandan S. Investigation on uric acid biosensor model for enzyme layer thickness for the application of arthritis disease diagnosis. Health Inf Sci Syst. 2018;6:1–6.Google Scholar
  30. 30.
    Busso N, Ea HK. The mechanisms of inflammation in gout and pseudogout (CPP-induced arthritis). Reumatismo. 2012;63(4):230–7.CrossRefGoogle Scholar
  31. 31.
    Ea HK. Mechanisms of gout inflammation. Presse Med. 2011;40(9 Pt 1):836–43.CrossRefGoogle Scholar
  32. 32.
    Dalbeth N, Lauterio TJ, Wolfe HR. Mechanism of action of colchicine in the treatment of gout. Clin Ther. 2014;36(10):1465–79.CrossRefGoogle Scholar
  33. 33.
    Steiger S, Harper JL. Mechanisms of spontaneous resolution of acute gouty inflammation. Curr Rheumatol Rep. 2014;16(1):392.CrossRefGoogle Scholar
  34. 34.
    Nuki G, Simkin PA. A concise history of gout and hyperuricemia and their treatment. Arthr Res Ther. 2006;8(suppl 1):S1.CrossRefGoogle Scholar
  35. 35.
    Zhu Y, Pandya BJ, Choi HK. Prevalence of gout and hyperuricemia in the US general population: the National Health and Nutrition Examination Survey 2007-2008. Arthritis Rheum. 2011;63(10):3136–41.CrossRefGoogle Scholar
  36. 36.
    Parthasarathy P, Vivekanandan S. A typical IoT architecture-based regular monitoring of arthritis disease using time wrapping algorithm. Int J Comput Appl. 2018. Scholar
  37. 37.
    Dirken-Heukensfeldt KJ, Teunissen TA, van de Lisdonk H, Lagro-Janssen AL. Clinical features of women with gout arthritis. A systematic review. Clin Rheumatol. 2010;29(6):575–82.CrossRefGoogle Scholar
  38. 38.
    Reginato AM, Mount DB, Yang I, Choi HK. The genetics of hyperuricaemia and gout. Nat Rev Rheumatol. 2012;8(10):610–21.CrossRefGoogle Scholar
  39. 39.
    Yang Q, Köttgen A, Dehghan A, et al. Multiple genetic loci influence serum urate levels and their relationship with gout and cardiovascular disease risk factors. Circ Cardiovasc Genet. 2010;3(6):523–30.CrossRefGoogle Scholar
  40. 40.
    Mount DB. The kidney in hyperuricemia and gout. Curr Opin Nephrol Hypertens. 2013;22(2):216–23.CrossRefGoogle Scholar
  41. 41.
    Ning TC, Keenan RT. Unusual clinical presentations of gout. Curr Opin Rheumatol. 2010;22(2):181–7.CrossRefGoogle Scholar
  42. 42.
    Campion EW, Glynn RJ, DeLabry LO. Asymptomatic hyperuricemia. Risks and consequences in the Normative Aging Study. Am J Med. 1987;82(3):421–6.CrossRefGoogle Scholar
  43. 43.
    Schumacher HR Jr. The pathogenesis of gout. Clevel Clin J Med. 2008;75(suppl 5):S2–4.CrossRefGoogle Scholar
  44. 44.
    Roddy E, Zhang W, Doherty M. Are joints affected by gout also affected by osteoarthritis? Ann Rheum Dis. 2007;66(10):1374–7.CrossRefGoogle Scholar
  45. 45.
    Choi HK, Atkinson K, Karlson EW, et al. Purine-rich foods, dairy and protein intake, and the risk of gout in men. N Engl J Med. 2004;350(11):1093–103.CrossRefGoogle Scholar
  46. 46.
    Zhang Y, Neogi T, Chen C, et al. Cherry consumption and decreased risk of recurrent gout attacks. Arthritis Rheum. 2012;64(12):4004–11.CrossRefGoogle Scholar
  47. 47.
    Pillinger MH, Goldfarb DS, Keenan RT. Gout and its comorbidities. Bull NYU Hosp Jt Dis. 2010;68(3):199–203.Google Scholar
  48. 48.
    Agarwal V, Hans N, Messerli F. Effect of allopurinol on blood pressure: a systematic review and meta-analysis. J Clin Hypertens (Greenwich). 2013;15(6):435–42.CrossRefGoogle Scholar
  49. 49.
    Krishnan E, Baker JF, Furst DE, Schumacher HR. Gout and the risk of acute myocardial infarction. Arthritis Rheum. 2006;54(8):2688–96.CrossRefGoogle Scholar
  50. 50.
    Schumacher HR Jr, Chen LX. Newer therapeutic approaches: gout. Rheum Dis Clin N Am. 2006;32(1):235–44.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.School of Electrical EngineeringVIT UniversityVelloreIndia

Personalised recommendations