Adapting to Environmental Heterogeneity: Selection and Radiation

Abstract

Environmental heterogeneity is invoked as a key explanatory factor in the adaptive evolution of a surprisingly wide range of phenomena. This article aims to analyze this explanatory scheme of categorizing traits or properties as adaptations to environmental heterogeneity ("heterogeneity adaptations"). First it is suggested that this scheme can be understood as a reaction to how heterogeneity adaptations were discounted or ignored in the modern synthesis. Then a positive account is proposed, distinguishing between two broad categories of adaptation to environmental heterogeneity: properties selected for by well-defined patterns of environmental heterogeneity, and properties that help organisms exploit novel patterns of environmental heterogeneity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Lively (1986, p. 658)

Fig. 4
Fig. 5
Fig. 6

Notes

  1. 1.

    Consider, for instance, Godfrey-Smith’s environmental complexity thesis: “The function of cognition is to enable the agent to deal with environmental complexity” (Godfrey-Smith 1996). Or consider Kanazawa’s hypothesis that general intelligence (g) is an adaptation to "novel" environmental conditions (Kanazawa 2004).

  2. 2.

    An alternative hypothesis is that prokaryotes and eukaryotes have a common ancestor that was neither a prokaryote nor an eukaryote (Forterre 2013). Forterre proposes that, “the ancestors of archaea (and bacteria) escaped protoeukaryotic predators by invading high temperature biotopes, triggering their reductive evolution toward the 'prokaryotic' phenotype” (Forterre 2013, p. 1).

  3. 3.

    This is a reformulation of Levins (1968), but without discussion of the case of “fine-grained heterogeneity” (i.e., temporal heterogeneity shorter than generation time, and spatial heterogeneity smaller than habitat spatial scale). This is sufficient for purposes of this article; for more details see Levins (1968, pp. 18ff).

  4. 4.

    Levins terms this "coarse-grained" heterogeneity (Levins 1968, p. 18).

  5. 5.

    Adaptive strategies at the level of the individual are adaptive to the environment of individuals; whereas those at the level of the population are adaptive to the environment of the population. For our purposes here, the environment of the population can be understood to consist of the sum total of the environments of the individual.

  6. 6.

    More precisely: the fitness impact of live trees is “screened off” (sensu Salmon 1984) by the fitness impact of dead trees. So live trees qua live trees (and not just potential dead trees) were not part of the external environment.

References

  1. Allman JM (1999) Evolving brains. Scientific American Library. Distributed by W.H. Freeman and Co, New York

    Google Scholar 

  2. Avilés L (1999) Cooperation and non-linear dynamics: an ecological perspective on the evolution of sociality. Evol Ecol Res 1:459–477

    Google Scholar 

  3. Beatty J (1995) The evolutionary contingency thesis. In: Wolters G, Lennox JG (eds) Concepts, theories, and rationality in the biological sciences. Universitätsverlag Konstanz-University of Pittsburgh Press, Konstanz

    Google Scholar 

  4. Berleman JE, Kirby JR (2009) Deciphering the hunting strategy of a bacterial wolfpack. FEMS Microbiol Rev 33:942–957. https://doi.org/10.1111/j.1574-6976.2009.00185.x

    Article  Google Scholar 

  5. Berryman AA, Raffa KF, Millstein JA, Stenseth NC (1989) Interaction dynamics of bark beetle aggregation and conifer defense rates. Oikos 56:256. https://doi.org/10.2307/3565345

    Article  Google Scholar 

  6. Birch MC (1984) Aggregation in bark beetles. In: Bell WJ, Cardé RT (eds) Chemical ecology of insects. Springer, Boston, pp 331–353

    Google Scholar 

  7. Blackstone NW (2016) An evolutionary framework for understanding the origin of eukaryotes. Biology. https://doi.org/10.3390/biology5020018

    Article  Google Scholar 

  8. Blackstone NW (2013) Why did eukaryotes evolve only once? Genetic and energetic aspects of conflict and conflict mediation. Philos Trans R Soc B Biol Sci 368:20120266. https://doi.org/10.1098/rstb.2012.0266

    Article  Google Scholar 

  9. Bock WJ (1980) The definition and recognition of biological adaptation. Am Zool 20:217–227. https://doi.org/10.1093/icb/20.1.217

    Article  Google Scholar 

  10. Boyd R, Richerson P (1985) Culture and the evolutionary process. University of Chicago Press, Chicago

    Google Scholar 

  11. Bradshaw AD (1965) Evolutionary significance of phenotypic plasticity in plants. Adv Genet 13:115–155. https://doi.org/10.1016/S0065-2660(08)60048-6

    Article  Google Scholar 

  12. Brandon RN (1990) Adaptation and environment. Princeton University Press, Princeton

    Google Scholar 

  13. Brandon RN (1978) Adaptation and evolutionary theory. Stud Hist Philos Sci Part A 9:181–206. https://doi.org/10.1016/0039-3681(78)90005-5

    Article  Google Scholar 

  14. Byrne R, Byrne RW (1995) The thinking ape: evolutionary origins of intelligence. Oxford University Press, Oxford

    Google Scholar 

  15. Chao L, Levin BR (1981) Structured habitats and the evolution of anticompetitor toxins in bacteria. Proc Natl Acad Sci USA 78:6324–6328. https://doi.org/10.1073/pnas.78.10.6324

    Article  Google Scholar 

  16. Cohen AA, Martin LB, Wingfield JC, McWilliams SR, Dunne JA (2012) Physiological regulatory networks: ecological roles and evolutionary constraints. Trends Ecol Evol 27:428–435. https://doi.org/10.1016/j.tree.2012.04.008

    Article  Google Scholar 

  17. Darwin C (2008) On the origin of species. Oxford University Press, New York

    Google Scholar 

  18. de Villemereuil P, Gaggiotti OE, Mouterde M, Till-Bottraud I (2016) Common garden experiments in the genomic era: new perspectives and opportunities. Heredity 116:249–254. https://doi.org/10.1038/hdy.2015.93

    Article  Google Scholar 

  19. Dupré J (2012) Processes of life: essays in the philosophy of biology. Oxford University Press, Oxford

    Google Scholar 

  20. Fenchel T (2002) Microbial behavior in a heterogeneous world. Science 296:1068–1071. https://doi.org/10.1126/science.1070118

    Article  Google Scholar 

  21. Fisher RA (1930) Thegenetical theory of natural selection. Oxford University Press, Oxford

    Google Scholar 

  22. Forterre P (2013) The common ancestor of archaea and eukarya was not an archaeon. Archaea. https://doi.org/10.1155/2013/372396

    Article  Google Scholar 

  23. Frausto da Silva JJR, Williams RJP (2001) The biological chemistry of the elements: the inorganic chemistry of life. Oxford University Press, Oxford

    Google Scholar 

  24. Futuyma DJ, Kirkpatrick M (2017) Evolution. Sinauer, Sunderland

    Google Scholar 

  25. Gilligan I (2007) Neanderthal extinction and modern human behaviour: the role of climate change and clothing. World Archaeol 39:499–514. https://doi.org/10.1080/00438240701680492

    Article  Google Scholar 

  26. Godfrey-Smith P (1996) Complexity and the function of mind in nature. Cambridge University Press, Cambridge

    Google Scholar 

  27. Grant PR (2013) Adaptive radiation. In: Losos JB, Baum DA, Futuyma DJ, Hoekstra HE, Lenski RE, Moore AJ et al (eds) The Princeton guide to evolution. Princeton University Press, Princeton, pp 559–566

    Google Scholar 

  28. Grosberg RK, Strathmann RR (2007) The evolution of multicellularity: a minor major transition? Annu Rev Ecol Evol Syst 38:621–654. https://doi.org/10.1146/annurev.ecolsys.36.102403.114735

    Article  Google Scholar 

  29. Hibbing ME, Fuqua C, Parsek MR, Peterson SB (2010) Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol 8:15–25. https://doi.org/10.1038/nrmicro2259

    Article  Google Scholar 

  30. Jarvis JUM, O’Riain MJ, Bennett NC, Sherman PW (1994) Mammalian eusociality: a family affair. Trends Ecol Evol 9:47–51. https://doi.org/10.1016/0169-5347(94)90267-4

    Article  Google Scholar 

  31. Jurkevitch E, Davidov Y (2007) Phylogenetic diversity and evolution of predatory prokaryotes. In: Jurkevitch E (ed) Predatory prokaryotes: biology, ecology and evolution. Springer, Berlin, Heidelberg, pp 11–56

    Google Scholar 

  32. Kanazawa S (2004) General intelligence as a domain-specific adaptation. Psychol Rev 111:512–523. https://doi.org/10.1037/0033-295X.111.2.512

    Article  Google Scholar 

  33. Kettlewell HBD (1955) Selection experiments on industrial melanism in the Lepidoptera. Heredity 9:323. https://doi.org/10.1038/hdy.1955.36

    Article  Google Scholar 

  34. Levins R (1968) Evolution in changing environments: some theoretical explorations. Princeton University Press, Princeton

    Google Scholar 

  35. Lively CM (1986) Canalization versus developmental conversion in a spatially variable environment. Am Nat 128:561–572

    Article  Google Scholar 

  36. López-García P, Eme L, Moreira D (2017) Symbiosis in eukaryotic evolution. J Theor Biol 434:20–33. https://doi.org/10.1016/j.jtbi.2017.02.031

    Article  Google Scholar 

  37. Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199

    Article  Google Scholar 

  38. Moran NA (1992) The evolutionary maintenance of alternative phenotypes. Am Nat 139:971–989. https://doi.org/10.1086/285369

    Article  Google Scholar 

  39. Muller HJ (1935) Out of the night; a biologist’s view of the future. Vanguard Press, New York

    Google Scholar 

  40. Nowak MA, May RM (1992) Evolutionary games and spatial chaos. Nature 359:826–829. https://doi.org/10.1038/359826a0

    Article  Google Scholar 

  41. O’Malley MA (2010) The first eukaryote cell: an unfinished history of contestation. Stud Hist Philos Biol Biomed Sci 41:212–224. https://doi.org/10.1016/j.shpsc.2010.07.010

    Article  Google Scholar 

  42. Pérez J, Moraleda-Muñoz A, Marcos-Torres FJ, Muñoz-Dorado J (2016) Bacterial predation: 75 years and counting! Environ Microbiol 18:766–779. https://doi.org/10.1111/1462-2920.13171

    Article  Google Scholar 

  43. Pfeiffer T, Bonhoeffer S (2003) An evolutionary scenario for the transition to undifferentiated multicellularity. Proc Natl Acad Sci USA 100:1095–1098. https://doi.org/10.1073/pnas.0335420100

    Article  Google Scholar 

  44. Pigliucci M (2006) Phenotypic plasticity and evolution by genetic assimilation. J Exp Biol 209:2362–2367. https://doi.org/10.1242/jeb.02070

    Article  Google Scholar 

  45. Pigliucci M (2010) Phenotypic plasticity. In: Pigliucci M, Müller G (eds) Evolution: the extended synthesis. MIT Press, Cambridge

    Google Scholar 

  46. Pigliucci M (2001) Phenotypic plasticity: beyond nature and nurture. Johns Hopkins University Press, Baltimore and London

    Google Scholar 

  47. Pigliucci M, Müller GB (2010) Elements of an extended evolutionary synthesis. In: Pigliucci M, Müller GB (eds) Evolution: the extended synthesis. MIT Press, Cambridge

    Google Scholar 

  48. Polis GA (1981) The evolution and dynamics of intraspecific predation. Annu Rev Ecol Syst 12:225–251. https://doi.org/10.1146/annurev.es.12.110181.001301

    Article  Google Scholar 

  49. Rappole JH (2013) The avian migrant: the biology of bird migration. Columbia University Press, New York

    Google Scholar 

  50. Ridley M (2004) Evolution, 3rd edn. Blackwell Publishers, Malden

    Google Scholar 

  51. Ruben J (1995) The evolution of endothermy in mammals and birds: from physiology to fossils. Annu Rev Physiol 57:69–95. https://doi.org/10.1146/annurev.ph.57.030195.000441

    Article  Google Scholar 

  52. Salmon WC (1984) Scientific explanation and the causal structure of the world. Princeton University Press, Princeton

    Google Scholar 

  53. Schirrmeister BE, Antonelli A, Bagheri HC (2011) The origin of multicellularity in cyanobacteria. BMC Evol Biol 11:45. https://doi.org/10.1186/1471-2148-11-45

    Article  Google Scholar 

  54. Schmalhausen II (1949) Factors of evolution: the theory of stabilizing selection. Blakiston Company, Philadelphia

    Google Scholar 

  55. Sol D, Duncan RP, Blackburn TM, Cassey P, Lefebvre L (2005) Big brains, enhanced cognition, and response of birds to novel environments. Proc Natl Acad Sci USA 102:5460–5465. https://doi.org/10.1073/pnas.0408145102

    Article  Google Scholar 

  56. Teaford MF, Ungar PS (2000) Diet and the evolution of the earliest human ancestors. Proc Natl Acad Sci USA 97:13506–13511. https://doi.org/10.1073/pnas.260368897

    Article  Google Scholar 

  57. Toman J, Flegr J (2018) General environmental heterogeneity as the explanation of sexuality? Comparative study shows that ancient asexual taxa are associated with both biotically and abiotically homogeneous environments. Ecol Evol 8:973–991. https://doi.org/10.1002/ece3.3716

    Article  Google Scholar 

  58. Ulijaszek SJ (2002) Human eating behaviour in an evolutionary ecological context. Proc Nutr Soc 61:517–526. https://doi.org/10.1079/PNS2002180

    Article  Google Scholar 

  59. van Duijn M, Keijzer F, Franken D (2006) Principles of minimal cognition: casting cognition as sensorimotor coordination. Adapt Behav 14:157–170. https://doi.org/10.1177/105971230601400207

    Article  Google Scholar 

  60. Van Fraassen BC (1980) The scientific image. Oxford University Press, Oxford

    Google Scholar 

  61. Wei Y, Wang X, Liu J, Nememan I, Singh AH, Weiss H, Levin BR (2011) The population dynamics of bacteria in physically structured habitats and the adaptive virtue of random motility. Proc Natl Acad Sci USA 108:4047–4052. https://doi.org/10.1073/pnas.1013499108

    Article  Google Scholar 

  62. Williams GC (1966) Adaptation and natural selection: a critique of some current evolutionary thought. Princeton University Press, Princeton

    Google Scholar 

  63. Woods HA, Wilson JK (2013) An information hypothesis for the evolution of homeostasis. Trends Ecol Evol 28:283–289. https://doi.org/10.1016/j.tree.2012.10.021

    Article  Google Scholar 

Download references

Acknowledgments

The author wishes to thank two anonymous reviewers for useful feedback.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hugh Desmond.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Desmond, H. Adapting to Environmental Heterogeneity: Selection and Radiation. Biol Theory (2021). https://doi.org/10.1007/s13752-021-00373-y

Download citation

Keywords

  • Adaptation
  • Adaptive radiation
  • Environmental heterogeneity
  • Environmental novelty
  • Selective environment