Biological Theory

, Volume 8, Issue 4, pp 324–333 | Cite as

Rational Engineering Principles in Synthetic Biology: A Framework for Quantitative Analysis and an Initial Assessment

  • Bernd Giese
  • Stefan Koenigstein
  • Henning Wigger
  • Jan C. Schmidt
  • Arnim von Gleich
Thematic Issue Article: Synthesis (σύνθεσις)

Abstract

The term “synthetic biology” is a popular label of an emerging biotechnological field with strong claims to robustness, modularity, and controlled construction, finally enabling the creation of new organisms. Although the research community is heterogeneous, it advocates a common denominator that seems to define this field: the principles of rational engineering. However, it still remains unclear to what extent rational engineering—rather than “tinkering” or the usage of random based or non-rational processes—actually constitutes the basis for the techniques of synthetic biology. In this article, we present the results of a quantitative bibliometric analysis of the realized extent of rational engineering in synthetic biology. In our analysis, we examine three issues: (1) We evaluate whether work at three levels of synthetic biology (parts, devices, and systems) is consistent with the principles of rational engineering. (2) We estimate the extent of rational engineering in synthetic biology laboratory practice by an evaluation of publications in synthetic biology. (3) We examine the methodological specialization in rational engineering of authors in synthetic biology. Our analysis demonstrates that rational engineering is prevalent in about half of the articles related to synthetic biology. Interestingly, in recent years the relative number of respective publications has decreased. Despite its prominent role among the claims of synthetic biology, rational engineering has not yet entirely replaced biotechnological methods based on “tinkering” and non-rational principles.

Keywords

Synthetic biology Bibliometric analysis Design Evolution Rational engineering Tinkering 

Supplementary material

13752_2013_130_MOESM1_ESM.pdf (72 kb)
Supplementary material 1 (PDF 73 kb)

References

  1. Andrianantoandro E, Basu S, Karig DK, Weiss R (2006) Synthetic biology: new engineering rules for an emerging discipline. Mol Syst Biol 2(2006):0028. doi:10.1038/msb4100073 Google Scholar
  2. Arkin AP, Fletcher DA (2006) Fast, cheap and somewhat in control. Genome Biol 7:114. doi:10.1186/gb-2006-7-8-114 CrossRefGoogle Scholar
  3. Banse G, Grunwald A (2009) Coherence and diversity in the engineering sciences. In: Meijers A (ed) Philosophy of technology and engineering sciences. Elsevier, Amsterdam, pp 155–184CrossRefGoogle Scholar
  4. Becskei A, Séraphin B, Serrano L (2001) Positive feedback in eukaryotic gene networks: cell differentiation by graded to binary response conversion. EMBO J 20:2528–2535. doi:10.1093/emboj/20.10.2528 CrossRefGoogle Scholar
  5. Behrens GA, Hummel A, Padhi SK, Schätzle S, Bornscheuer UT (2011) Discovery and protein engineering of biocatalysts for organic synthesis. Adv Synth Catal 353:2191–2215. doi:10.1002/adsc.201100446 Google Scholar
  6. Benner SA, Yang Z, Chen F (2011) Synthetic biology, tinkering biology, and artificial biology. What are we learning? C R Chim 14:372–387CrossRefGoogle Scholar
  7. Breithaupt H (2006) The engineer’s approach to biology. EMBO Rep 7:21–24. doi:10.1038/sj.embor.7400607 CrossRefGoogle Scholar
  8. Brent R (2004) A partnership between biology and engineering. Nat Biotechnol 22:1211–1214. doi:10.1038/nbt1004-1211 CrossRefGoogle Scholar
  9. Bujara M, Panke S (2010) Engineering in complex systems. Curr Opin Biotechnol 21:586–591. doi:10.1016/j.copbio.2010.07.007 CrossRefGoogle Scholar
  10. Cambray G, Mutalik VK, Arkin AP (2011) Toward rational design of bacterial genomes. Curr Opin Microbiol 5:624–630. doi:10.1016/j.mib.2011.08.001 CrossRefGoogle Scholar
  11. Carothers JM, Goler JA, Keasling JD (2009) Chemical synthesis using synthetic biology. Curr Opin Biotechnol 20(4):498–503Google Scholar
  12. Carothers JM, Goler JA, Juminaga D, Keasling JD (2011) Model-driven engineering of RNA devices to quantitatively program gene expression. Science 334(6063):1716–1719. doi:10.1126/science.1212209 Google Scholar
  13. Dougherty MJ, Arnold FH (2009) Directed evolution: new parts and optimized function. Curr Opin Biotechnol 20:486–491. doi:10.1016/j.copbio.2009.08.005.Directed CrossRefGoogle Scholar
  14. Dymond JS, Richardson SM, Coombes CE, Babatz T, Muller H, Annaluru N, Blake WJ, Schwerzmann JW, Dai J, Lindstrom DL, Boeke AC, Gottschling DE, Chandrasegaran S, Bader JS, Boeke JD (2011) Synthetic chromosome arms function in yeast and generate phenotypic diversity by design. Nature 477:471–476. doi:10.1038/nature10403 CrossRefGoogle Scholar
  15. Eldar A, Elowitz MB (2010) Functional roles for noise in genetic circuits. Nature 467:167–173. doi:10.1038/nature09326 CrossRefGoogle Scholar
  16. Ellis T, Adie T, Baldwin GS (2011) DNA assembly for synthetic biology: from parts to pathways and beyond. Integr Biol (Camb) 3:109–118. doi:10.1039/c0ib00070a CrossRefGoogle Scholar
  17. Endy D (2005) Foundations for engineering biology. Nature 438:449–453. doi:10.1038/nature04342 CrossRefGoogle Scholar
  18. Gibson DG, Benders GA, Andrews-Pfannkoch C, Denisova Ea, Baden-Tillson H, Zaveri J, Stockwell TB, Brownley A, Thomas DW, Algire Ma, Merryman C, Young L, Noskov VN, Glass JI, Venter JC, Hutchison CA, Smith HO (2008) Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 319:1215–1220. doi:10.1126/science.1151721 CrossRefGoogle Scholar
  19. Greber D, Fussenegger M (2007) Mammalian synthetic biology: engineering of sophisticated gene networks. J Biotechnol 130(4):329–345. doi:10.1016/j.jbiotec.2007.05.014 Google Scholar
  20. Heinemann M, Panke S (2006) Synthetic biology: putting engineering into biology. Bioinformatics 22:2790–2799. doi:10.1093/Bioinformatics/Btl469 CrossRefGoogle Scholar
  21. Hoesl MG, Budisa N (2011) In vivo incorporation of multiple noncanonical amino acids into proteins. Angew Chem Int Ed Engl 50:2896–2902. doi:10.1002/anie.201005680 CrossRefGoogle Scholar
  22. Isaacs FJ, Dwyer DJ, Collins JJ (2006) RNA synthetic biology. Nat Biotechnol 24:545–554. doi:10.1038/nbt1208 CrossRefGoogle Scholar
  23. Jewett MC, Forster AC (2010) Update on designing and building minimal cells. Curr Opin Biotechnol 21:697–703. doi:10.1016/j.copbio.2010.06.008 CrossRefGoogle Scholar
  24. Kittleson JT, Wu GC, Anderson JC (2012) Successes and failures in modular genetic engineering. Curr Opin Chem Biol 16:329–336. doi:10.1016/j.cbpa.2012.06.009 CrossRefGoogle Scholar
  25. Kortemme T, Baker D (2004) Computational design of protein-protein interactions. Curr Opin Chem Biol 8(1):91–97. doi:10.1016/j.cbpa.2003.12.008 Google Scholar
  26. Kroes P (2009) Foundational issues of engineering design. In: Meijers A (ed) Philosophy of technology and engineering sciences. Elsevier, Amsterdam, pp 513–541CrossRefGoogle Scholar
  27. Kwok R (2010) Five hard truths for synthetic biology. Nature 463:288–290. doi:10.1038/463288a CrossRefGoogle Scholar
  28. Layton E (1971) Mirror-image twins: communities of science and technology in 19th-century America. Technol Cult 12:562–580. doi:10.2307/3102571 CrossRefGoogle Scholar
  29. Lazebnik Y (2002) Can a biologist fix a radio? Or, what I learned while studying apoptosis. Cancer Cell 2:179–182. doi:10.1016/S1535-6108(02)00133-2 CrossRefGoogle Scholar
  30. Lux MW, Bramlett BW, Ball DA, Peccoud J (2012) Genetic design automation: engineering fantasy or scientific renewal? Trends Biotechnol 30:120–126. doi:10.1016/j.tibtech.2011.09.001 CrossRefGoogle Scholar
  31. Lynch Sa, Gill RT (2011) Synthetic biology: new strategies for directing design. Metab Eng 14:205–211. doi:10.1016/j.ymben.2011.12.007 CrossRefGoogle Scholar
  32. Marchisio MA, Stelling J (2009) Computational design tools for synthetic biology. Curr Opin Biotechnol 20:479–485. doi:10.1016/j.copbio.2009.08.007 CrossRefGoogle Scholar
  33. Marlière P, Patrouix J, Döring V, Herdewijn P, Tricot S, Cruveiller S, Bouzon M, Mutzel R (2011) Chemical evolution of a bacterium’s genome. Angew Chem Int Ed Engl 50:7109–7114. doi:10.1002/anie.201100535 CrossRefGoogle Scholar
  34. Michalodimitrakis K, Isalan M (2009) Engineering prokaryotic gene circuits. Curr Opin Biotechnol 33:27–37. doi:10.1111/j.1574-6976.2008.00139.x Google Scholar
  35. Mitcham C, Schatzberg E (2009) Defining technology and the engineering sciences. In: Meijers A (ed) Philosophy of technology and engineering sciences. Elsevier, Amsterdam, pp 27–63CrossRefGoogle Scholar
  36. Moya A, Gil R, Latorre A, Peretó J, Pilar Garcillán-Barcia M, De La Cruz F (2009) Toward minimal bacterial cells: evolution vs. design. FEMS Microbiol Rev 33(1):225–235. doi:10.1111/j.1574-6976.2008.00151.x
  37. Nandagopal N, Elowitz MB (2011) Synthetic biology: integrated gene circuits. Science 333(6047):1244–1248. doi:10.1126/science.1207084 Google Scholar
  38. Nielsen J, Keasling JD (2011) Synergies between synthetic biology and metabolic engineering. Nature Biotechnol 29(8):693–695. doi:10.1038/nbt.1937 Google Scholar
  39. Noireaux V, Maeda YT, Libchaber A (2011) Development of an artificial cell, from self-organization to computation and self-reproduction. Proc Natl Acad Sci USA 108:3473–3480. doi:10.1073/pnas.1017075108 CrossRefGoogle Scholar
  40. Perkel JM (2013) Streamlined engineering for synthetic biology. Nat Methods 10:39–42. doi:10.1038/nmeth.2304 CrossRefGoogle Scholar
  41. Pottage A, Sherman B (2007) Organisms and manufactures: on the history of plant inventions. Melb Univ Law Rev 31:539–568Google Scholar
  42. Purnick PEM, Weiss R (2009) The second wave of synthetic biology: from modules to systems. Nat Rev Mol Cell Biol 1:410–422. doi:10.1038/nrm2698 CrossRefGoogle Scholar
  43. Richmond DL, Schmid EM, Martens S, Stachowiak JC, Liska N, Fletcher DA (2011) Forming giant vesicles with controlled membrane composition, asymmetry, and contents. Proc Natl Acad Sci USA 108:9431–9436. doi:10.1073/pnas.1016410108 CrossRefGoogle Scholar
  44. Schyfter P (2011) Technological biology? Things and kinds in synthetic biology. Biol Philos 27:29–48. doi:10.1007/s10539-011-9288-9 CrossRefGoogle Scholar
  45. Shchukin DG, Sukhorukov GB (2004) Nanoparticle synthesis in engineered organic nanoscale reactors. Adv Mater 16(8):671–682. doi:10.1002/adma.200306466 Google Scholar
  46. Shetty RP, Endy D, Knight TF (2008) Engineering BioBrick vectors from BioBrick parts. J Biol Eng 2:5. doi:10.1186/1754-1611-2-5 CrossRefGoogle Scholar
  47. Sismour AM, Benner SA (2005) The use of thymidine analogs to improve the replication of an extra DNA base pair: a synthetic biological system. Nuc Acids Res 33(17):5640–5646. doi:10.1093/nar/gki873 Google Scholar
  48. Solé RV, Munteanu A, Rodriguez-Caso C, Macía J, Sole RV, Macia J (2007) Synthetic protocell biology: from reproduction to computation. Philos Trans R Soc Lond B Biol Sci 362:1727–1739. doi:10.1098/rstb.2007.2065 CrossRefGoogle Scholar
  49. Tian J, Ma K, Saaem I (2009) Advancing high-throughput gene synthesis technology. Mol Biosyst 5(7):714–722. doi:10.1039/b822268c Google Scholar
  50. Wang HH, Church GM (2011) Multiplexed genome engineering and genotyping methods: applications for synthetic biology and metabolic engineering. Methods Enzymol 498:409–426CrossRefGoogle Scholar
  51. Weber W, Baba MD, Fussenegger M (2007) Synthetic ecosystems based on airborne interand intrakingdom communication. Proc Natl Acad Sci USA 104(25):10435–10440Google Scholar
  52. Weber W, Fussenegger M (2012) Emerging biomedical applications of synthetic biology. Nat Rev Genet 13:21–35. doi:10.1038/nrg3094 Google Scholar
  53. Welch M, Villalobos A, Gustafsson C, Minshull J (2011) Designing genes for successful protein expression. Methods Enzymol 498:43–66. doi:10.1016/B978-0-12-385120-8.00003-6 Google Scholar
  54. Win MN, Liang JC, Smolke CD (2009) Frameworks for programming biological function through RNA parts and devices. Chem Biol 16(3):298–310. doi:10.1016/j.chembiol.2009.02.011 Google Scholar

Copyright information

© Konrad Lorenz Institute for Evolution and Cognition Research 2013

Authors and Affiliations

  • Bernd Giese
    • 1
  • Stefan Koenigstein
    • 1
  • Henning Wigger
    • 1
  • Jan C. Schmidt
    • 2
  • Arnim von Gleich
    • 1
  1. 1.Department of Technological Design and DevelopmentUniversity of BremenBremenGermany
  2. 2.Unit of Social, Culture and Technology StudiesDarmstadt University of Applied SciencesDarmstadtGermany

Personalised recommendations