A Mixed Self: The Role of Symbiosis in Development

Abstract

Since the 1950s, the common view of development has been internalist: development is seen as the result of the unfolding of potentialities already present in the egg cell. In this article, I show that this view is incorrect because of the crucial influence of the environment on development. I focus on a fascinating example, that of the role played by symbioses in development, especially bacterial symbioses, a phenomenon found in virtually all organisms (plants, invertebrates, and vertebrates). I claim that we must consequently modify our conception of the boundaries of the developing entity, and I show how immunology can help us in accomplishing this task. I conclude that the developing entity encompasses many elements traditionally seen as “foreign,” while I reject the idea that there is no possible distinction between the organism and its environment.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Abe T, Bignell DE, Higashi M (eds) (2000) Termites: evolution, sociality, symbiosis, ecology. Kluwer Academic, Dordrecht/Norwell

    Google Scholar 

  2. Billingham RE, Brent L, Medawar PB (1953) Actively acquired tolerance of foreign cells. Nature 172:603–606

    Article  Google Scholar 

  3. Bischoff V, Vignal C, Duvic B, Boneca IG, Hoffmann JA, Royet J (2006) Downregulation of the Drosophila immune response by peptidoglycan-recognition proteins SC1 and SC2. PLoS Pathog 2(2):e14:0139–0147

    Google Scholar 

  4. Bjorkholm B, Bok CM, Lundin A, Rafter J, Hibberd ML, Pettersson S (2009) Intestinal microbiota regulate xenobiotic metabolism in the liver. PLoS One 4(9):e6958

    Article  Google Scholar 

  5. Bouskra D, Brézillon C, Bérard M, Werts C, Varona R, Boneca IG, Eberl G (2008) Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature 456:507–512

    Article  Google Scholar 

  6. Bright M, Bulgheresi S (2010) A complex journey: transmission of microbial symbionts. Nat Rev Microbiol 8:218–230

    Article  Google Scholar 

  7. Brownlie JC, Johnson KN (2009) Symbiont-mediated protection in insect hosts. Trends Microbiol 17(8):348–354

    Article  Google Scholar 

  8. Bry L, Falk PG, Midtvedt T, Gorgon JI (1996) A model of host-microbial interactions in an open mammalian ecosystem. Science 273:1380–1383

    Article  Google Scholar 

  9. Burnet FM (1969) Self and notself. Cambridge University Press, Cambridge

    Google Scholar 

  10. Crespi M, Frugier F (2008) De novo organ formation from differentiated cells: root nodule organogenesis. Sci Signal 1:re11

    Article  Google Scholar 

  11. Davidson SK, Stahl DA (2008) Selective recruitment of bacteria during embryogenesis of an earthworm. ISME J 2:510–518

    Article  Google Scholar 

  12. Dedeine F et al (2001) Removing symbiotic Wolbachia bacteria specifically inhibits oogenesis in a parasitic wasp. Proc Natl Acad Sci USA 98(11):6247—6252

    Google Scholar 

  13. Eberl G (2005) Inducible lymphoid tissues in the adult gut: recapitulation of a fetal developmental pathway? Nat Rev Immunol 5:413–420

    Article  Google Scholar 

  14. Eberl G (2007) From induced to programmed lymphoid tissues: the long road to preempt pathogens. Trends Immunol 28(10):423–428

    Article  Google Scholar 

  15. Eberl G (2010) A new vision of immunity: homeostasis of the superorganism. Mucosal Immunol 3(5):450–460

    Article  Google Scholar 

  16. Eberl G, Lochner M (2009) The development of intestinal lymphoid tissues at the interface of self and microbiota. Mucosal Immunol 2(6):478–485

    Article  Google Scholar 

  17. Garrett WS, Gordon JI, Glimcher LH (2010) Homeostasis and inflammation in the intestine. Cell 140(6):859–870

    Article  Google Scholar 

  18. Gilbert SF (2001) Ecological developmental biology: biology meets the real world. Dev Biol 233:1–12

    Article  Google Scholar 

  19. Gilbert SF (2002) The genome in its ecological context. Ann N Y Acad Sci 981:202–218

    Article  Google Scholar 

  20. Gilbert SF (2005) Mechanisms for the environmental regulation of gene expression: ecological aspects of animal development. J Biosci 30:101–110

    Article  Google Scholar 

  21. Gilbert SF (2010) Developmental biology, 9th edn. Sinauer Associates, Sunderland

    Google Scholar 

  22. Gilbert SF (2011) Expanding the temporal dimensions of developmental biology: the role of environmental agents in establishing adult-onset phenotypes. Biol Theory 6(1). doi:10.1007/s13752-011-0008-0

  23. Gilbert SF, Epel D (2009) Ecological developmental biology: integrating epigenetics, medicine and evolution. Sinauer Associates, Sunderland

    Google Scholar 

  24. Gil-Turnes MS, Hay ME, Fenical W (1989) Symbiotic marine bacteria chemically defend crustacean embryos from a pathogenic fungus. Science 246:116–118

    Article  Google Scholar 

  25. Griffiths PE (2009) In what sense does “nothing in biology make sense except in the light of evolution”? Acta Biotheor 57:11–32

    Article  Google Scholar 

  26. Griffiths P, Gray R (2001) Darwinism and developmental systems. In: Oyama S, Griffiths P, Gray R (eds) Cycles of contingency. MIT Press, Cambridge, pp 195–218

    Google Scholar 

  27. Hardoim PR, van Overbeek LS, van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16(10):463–471

    Article  Google Scholar 

  28. Heijtz RD, Wang S, Anuard F, Qian Y, Björkholm B, Samuelsson A, Hibberd ML, Forssberg H, Pettersson S (2011) Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci USA 108:3047–3052

    Article  Google Scholar 

  29. Hill DA, Arthis D (2010) Intestinal bacteria and the regulation of immune cell homeostasis. Annu Rev Immunol 28:623–667

    Article  Google Scholar 

  30. Hooper LV (2004) Bacterial contributions to mammalian gut development. Trends Microbiol 12(3):129–134

    Article  Google Scholar 

  31. Hooper LV (2005) Resident bacteria as inductive signals in mammalian gut development. In: McFall-Ngai MJ, Henderson B, Ruby EG (eds) The influence of cooperative bacteria on animal host biology. Cambridge University Press, Cambridge, pp 249–264

    Google Scholar 

  32. Hooper LV, Gordon JI (2001) Commensal host-bacterial relationships in the gut. Science 292:1115–1118

    Article  Google Scholar 

  33. Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG, Gordon JI (2001) Molecular analysis of commensal host-microbial relationships in the intestine. Science 291:881–884

    Article  Google Scholar 

  34. Jaenike J, Unckless R, Cockburn SN, Boelio LM, Perlman SJ (2010) Adaptation via symbiosis: recent spread of a Drosophila defensive symbiont. Science 329:212–215

    Article  Google Scholar 

  35. Kereszt A, Mergaert P, Maroti G, Kondorosi E (2011) Innate immunity effectors and virulence factors in symbiosis. Curr Opin Microbiol 14:76–81

    Article  Google Scholar 

  36. Kondorosi E, Kondorosi A (2004) Endoreduplication and activation of the anaphase-promoting complex during symbiotic cell development. FEBS Lett 567:152–157

    Article  Google Scholar 

  37. Koropatnick TA, Engle JT, Apicella MA, Stabb EV, Goldman WE, McFall-Ngai MJ (2004) Microbial factor-mediated development in a host-bacterial mutualism. Science 306:1186–1188

    Article  Google Scholar 

  38. Kremer N, Charif D, Henri H, Bataille M, Prévost G, Kraaijeveld K, Vavre F (2009) A new case of Wolbachia dependence in the genus Asobara: evidence for parthenogenesis induction in Asobara japonica. Heredity 103(3):248–256

    Article  Google Scholar 

  39. Lanning DK, Rhee K-J, Knight KL (2005) Intestinal bacteria and development of the B-lymphocyte repertoire. Trends Immunol 26(8):419–425

    Article  Google Scholar 

  40. Lee YK, Mazmanian SK (2010) Has the microbiota played a critical role in the evolution of the adaptive immune system? Science 330:1768–1773

    Article  Google Scholar 

  41. Lemaitre B, Hoffmann J (2007) The host defense of Drosophila melanogaster. Annu Rev Immunol 25:697–743

    Article  Google Scholar 

  42. Lewontin R (2000) The triple helix: gene, organism and environment. Harvard University Press, Cambridge, MA

    Google Scholar 

  43. Love AC (2008) Explaining the ontogeny of form: philosophical issues. In: Sarkar S, Plutynski A (eds) A companion to the philosophy of biology. Blackwell, Malden, pp 223–247

    Google Scholar 

  44. Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL (2005) An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122:107–118

    Article  Google Scholar 

  45. Mazmanian SK, Round JL, Kasper DL (2008) A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 453:620–625

    Article  Google Scholar 

  46. McFall-Ngai M (2002) Unseen forces: the influence of bacteria on animal development. Dev Biol 242:1–14

    Article  Google Scholar 

  47. McFall-Ngai MJ, Ruby EG (1991) Symbiont recognition and subsequent morphogenesis as early events in an animal-bacterial mutualism. Science 254:1491–1494

    Article  Google Scholar 

  48. McFall-Ngai M, Henderson B, Ruby EG (eds) (2005) The influence of cooperative bacteria on animal host biology. Cambridge University Press, Cambridge

    Google Scholar 

  49. McFall-Ngai M, Nyholm SV, Castillo MG (2010) The role of the immune system in the initiation and persistence of the Euprymna scolopes-Vibrio fischeri symbiosis. Semin Immunol 22(1):48–53

    Article  Google Scholar 

  50. Nyholm SV, Stabb EV, Ruby EG, McFall-Ngai MJ (2000) Establishment of an animal-bacterial association: recruiting symbiotic vibrios from the environment. Proc Natl Acad Sci USA 97:10231–10235

    Article  Google Scholar 

  51. Nyholm SV, Stewart JJ, Ruby EG, McFall-Ngai MJ (2009) Recognition between symbiotic Vibrio fischeri and the hemocytes of Euprymna scolopes. Environ Microbiol 11(2):483–493

    Article  Google Scholar 

  52. O’Hara AM, Shanahan F (2006) The gut flora as a forgotten organ. EMBO Reports 7(7):688–693

    Article  Google Scholar 

  53. O’Neill SL, Hoffmann AA, Werren JH (1997) Influential passengers: inherited microorganisms and arthropod reproduction. Oxford University Press, New York

    Google Scholar 

  54. Oyama S ([1985] 2000) The ontogeny of information. Duke University Press, Durham

  55. Oyama S, Griffiths P, Gray R (eds) (2001) Cycles of contingency: developmental systems and evolution. MIT Press, Cambridge, MA

    Google Scholar 

  56. Palmer C, Bik EM, DiGiulio DB, Relman DA, Brown PO (2007) Development of the human infant intestinal microbiota. PLoS Biol 5(7):1556–1573

    Article  Google Scholar 

  57. Pivato B, Offre P, Marchelli S, Barbonaglia B, Mougel C, Lemanceau P, Berta G (2009) Bacterial effects on arbuscular mycorrhizal fungi and mycorrhiza development as influenced by the bacteria, fungi, and host plant. Mycorrhiza 19:81–90

    Article  Google Scholar 

  58. Pradeu T (2009) Les Limites du Soi: Immunologie et identité biologique. Montreal: Presses Universitaires de Montreal. English translation: The limits of the self: immunology and biological identity (in press 2012). Oxford University Press, New York

  59. Pradeu T (2010a) What is an organism? An immunological answer. Hist Philos Life Sci 32(2–3):247–267

    Google Scholar 

  60. Pradeu T (2010b) The organism in developmental systems theory. Biol Theory 5:216–222

    Article  Google Scholar 

  61. Pradeu T, Alizon S (in preparation) Ecologizing immunology

  62. Pradeu T, Carosella ED (2006a) The self model and the conception of biological identity in immunology. Biol Philos 21(2):235–252

    Article  Google Scholar 

  63. Pradeu T, Carosella ED (2006b) On the definition of a criterion of immunogenicity. Proc Natl Acad Sci USA 103(47):17858–17861

    Article  Google Scholar 

  64. Round JL, Mazmanian SK (2009) The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9:313–323

    Article  Google Scholar 

  65. Ryu JH, Kim SH, Lee HY, Bai JY, Nam YD, Bae JW, Lee DG, Shin SC, Ha EM, Lee (2008) Innate immune homeostasis by the homeobox gene Caudal and commensal-gut mutualism in Drosophila. Science 319:777–782

    Article  Google Scholar 

  66. Ryu JH, Ha EM, Lee WJ (2010) Innate immunity and gut-microbe mutualism in Drosophila. Dev Comp Immunol 34(4):369–376

    Article  Google Scholar 

  67. Salzman NH (2011) Microbiota-immune system interaction: an uneasy alliance. Curr Opin Microbiol 14:99–105

    Article  Google Scholar 

  68. Sawa S, Cherrier M, Lochner M, Satoh-Takayama N, Fehling HJ, Langa F, Di Santo JP, Eberl G (2010) Lineage relationship analysis of RORγt+. Science 330:665–669

    Article  Google Scholar 

  69. Schulenburg H, Kurtz J, Moret Y, Siva-Jothy MT (2009) Ecological immunology. Philos Trans R Soc B 364:3–14

    Article  Google Scholar 

  70. Smith C, McCoy KD, Macpherson AJ (2007) Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota. Semin Immunol 19:59–69

    Article  Google Scholar 

  71. Stappenbeck TS, Hooper LV, Gordon JI (2002) Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proc Natl Acad Sci USA 99:15451–15455

    Article  Google Scholar 

  72. Stougaerd J (2000) Regulators and regulation of legume root nodule development. Plant Physiol 124:531–539

    Article  Google Scholar 

  73. Tong D, Rozas NS, Oakley TH, Mitchell J, Colley NJ, McFall-Ngai MJ (2009) Evidence for light perception in a bioluminescent organ. Proc Natl Acad Sci USA 106:9836–9841

    Article  Google Scholar 

  74. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI (2007) The human microbiome project. Nature 449:804–810

    Article  Google Scholar 

  75. Van de Velde W, Zehirov G, Szatmari A, Debreczeny M, Ishihara H, Kevei Z, Farkas A, Mikulass K, Nagy A, Tiricz H, Satiat-Jeunemaître B, Alunni B, Bourge M, Kucho K, Abe M, Kereszt A, Maroti G, Uchiumi T, Kondorosi E, Mergaert P (2010) Plant peptides govern terminal differentiation of bacteria in symbiosis. Science 327:1122–1126

    Article  Google Scholar 

  76. Waddington CH (1959) Canalization of development and genetic assimilation of an acquired character. Nature 183:1654–1655

    Article  Google Scholar 

  77. Wang D, Griffitts J, Starker C, Fedorova E, Limpens E, Ivanov S, Bisseling T, Long S (2010) A nodule-specific protein secretory pathway required for nitrogen-fixing symbiosis. Science 327:1126–1129

    Article  Google Scholar 

  78. West-Eberhard MJ (2003) Developmental plasticity and evolution. Oxford University Press, New York

    Google Scholar 

  79. Wilks M (2007) Bacteria and early human development. Early Hum Dev 83:165–170

    Article  Google Scholar 

  80. Xu J, Gordon JI (2003) Honor thy symbionts. Proc Natl Acad Sci USA 100:10452–10459

    Article  Google Scholar 

  81. Zilber-Rosenberg I, Rosenberg E (2008) Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev 32:723–735

    Article  Google Scholar 

Download references

Acknowledgments

I want to thank Lucie Laplane, Michel Morange, Antonine Nicoglou, Frédérique Théry, and Michel Vervoort for excellent and fruitful interactions within the “Boundaries of Development” research group at the IHPST. I also want to thank Gérard Eberl, Scott Gilbert, and Peter Godfrey-Smith for useful discussions, as well as Lucie Laplane, Michel Morange, Michel Vervoort, Francesca Merlin, and Hannah-Louise Clark for their comments on the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Thomas Pradeu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pradeu, T. A Mixed Self: The Role of Symbiosis in Development. Biol Theory 6, 80–88 (2011). https://doi.org/10.1007/s13752-011-0011-5

Download citation

Keywords

  • Bacteria
  • Development
  • Internalism
  • Organism
  • Organogenesis
  • Self
  • Symbiosis