Biological Theory

, Volume 6, Issue 1, pp 89–102 | Cite as

The Fate of Darwinism: Evolution After the Modern Synthesis

Original Paper

Abstract

We trace the history of the Modern Evolutionary Synthesis, and of genetic Darwinism generally, with a view to showing why, even in its current versions, it can no longer serve as a general framework for evolutionary theory. The main reason is empirical. Genetical Darwinism cannot accommodate the role of development (and of genes in development) in many evolutionary processes. We go on to discuss two conceptual issues: whether natural selection can be the “creative factor” in a new, more general framework for evolutionary theorizing; and whether in such a framework organisms must be conceived as self-organizing systems embedded in self-organizing ecological systems.

Keywords

Developmental Systems Theory Ecological systems Genetical Darwinism Hierarchical expansion (of synthesis) Modern Evolutionary Synthesis Natural selection Niche construction Self-organization Selfish gene theory 

References

  1. Ariew A (2007) Teleology. In: Hull D, Ruse M (eds) The Cambridge companion to the philosophy of biology. Cambridge University Press, Cambridge, pp 160–181Google Scholar
  2. Bannister R (1970) “The survival of the fittest is our doctrine”: history or histrionics? J Hist Ideas 31:377–398CrossRefGoogle Scholar
  3. Barkow J, Cosmides L, Tooby J (eds) (1992) The adapted mind: evolutionary psychology and the generation of culture. Oxford University Press, New YorkGoogle Scholar
  4. Burian R (2007) On microRNA and the need for exploratory experimentation in post-genomic molecular biology. Stud Hist Philos Life Sci 29:285–312Google Scholar
  5. Colosimo P, Peichel C, Nerang K, Blackman B, Shapiro M, Schluter D, Kingsley D (2004) The genetic architecture of parallel armor plate reduction in threespine sticklebacks. PLoS Biol 2:635–641CrossRefGoogle Scholar
  6. Crick F (1970) The central dogma of molecular biology. Nature 227:561–563CrossRefGoogle Scholar
  7. Crook P (2007) Darwin’s coat-tails: essays on Social Darwinism. Peter Lang, New YorkGoogle Scholar
  8. Dawkins R (2006) The god delusion. Transworld, EalingGoogle Scholar
  9. Dawkins R ([1979] 1989) The selfish gene, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  10. Dennett D (1995) Darwin’s dangerous idea. Simon & Schuster, New YorkGoogle Scholar
  11. Depew D (2003) From heat engines to digital printouts: a topology of the organism from the Victorian era to the Human Genome Project. In: Rabinovitz L (ed) Memory bytes: history, technology, and digital culture. Duke University Press, Durham, pp 47–75Google Scholar
  12. Depew D (2008) Consequence etiology and biological teleology in Aristotle and Darwin. Stud Hist Philos Biol Biomed Sci 38(4):379–390Google Scholar
  13. Depew D (2010a) Darwinian controversies: an historiographical recounting. Sci Educ 19:323–366CrossRefGoogle Scholar
  14. Depew D (2010b) Adaptation as process: the future of Darwinism and the legacy of Theodosius Dobzhanksy. Stud Hist Philos Biol Biomed Sci 42:89–98Google Scholar
  15. Depew D, Weber B (1995) Darwinism evolving: systems dynamics and the genealogy of natural selection. MIT Press, Cambridge, MAGoogle Scholar
  16. Dobzhansky T (1937) Genetics and the origin of species. Columbia University Press, New YorkGoogle Scholar
  17. Dobzhansky T (1962) Mankind evolving. Yale University Press, New HavenGoogle Scholar
  18. Dobzhansky T (1964) Biology, molecular and organismic. American Zoologist 4:443–452Google Scholar
  19. Dobzhansky T (1970) Genetics of the evolutionary process. Columbia University Press, New YorkGoogle Scholar
  20. Dobzhansky TF, Ayala G, Stebbins L, Valentine J (1977) Evolution. Freeman, San FranciscoGoogle Scholar
  21. England R (2001) Natural selection, teleology, and the logos: from Darwin to the Oxford neo-Darwinists, 1859–1909. In: Brooke JH, Osler MJ, van der Meer JM (eds) Osiris 2nd series, vol 16. Science in theistic contexts: cognitive dimensions. University of Chicago Press, Chicago, pp 270–287Google Scholar
  22. Fisher R (1930) The genetical theory of natural selection. Oxford University Press, OxfordGoogle Scholar
  23. Fodor J, Piattelli-Palmarini M (2010) What Darwin got wrong. Farrar, Straus & Giroux, New YorkGoogle Scholar
  24. Foster P (2004) Adaptive mutation in Escherichia coli. J Bacteriol 186:4846–4852CrossRefGoogle Scholar
  25. Gayon J (1998) Darwin’s struggle for survival. Cambridge University Press, Cambridge (Translation of Darwin et après-Darwin (1992). Vrin, Paris)Google Scholar
  26. Gilbert S (1994) Dobzhansky, Waddington, and Schmalhausen: embryology and the modern synthesis. In: Adams M (ed) The evolution of Theodosius Dobzhansky. Princeton University Press, Princeton, pp 143–162Google Scholar
  27. Gilbert S (1998) Bearing crosses: a historiography of genetics and embryology. Am J Med Genet 76:168–182CrossRefGoogle Scholar
  28. Gilbert S, Epel D (2009) Ecological developmental biology. Sinauer, SunderlandGoogle Scholar
  29. Goldschmidt R (1940) The material basis of evolution. Yale University Press, New HavenGoogle Scholar
  30. Gould S (1982) Darwinism and the expansion of evolutionary theory. Science 216:380–387CrossRefGoogle Scholar
  31. Gould S (2002) The structure of biological theory. Harvard University Press, CambridgeGoogle Scholar
  32. Grene M, Depew D (2004) The philosophy of biology: an episodic history. Cambridge University Press, CambridgeGoogle Scholar
  33. Hawkins M (1997) Social Darwinism in European and American Thought, 1860–1945. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  34. Hoekstra H, Coyne J (2007) The locus of evolution: evo devo and the genetics of adaptation. Evolution 61:995–1016CrossRefGoogle Scholar
  35. Hofstadter R (1944) Social Darwinism in American thought. University of Pennsylvania Press, PhiladelphiaGoogle Scholar
  36. Hull D (1978) A matter of individuality. Philosophy of Science 45:335–360CrossRefGoogle Scholar
  37. Huxley J (1942) Evolution: the modern synthesis. Allen and Unwin, LondonGoogle Scholar
  38. Jablonka E, Lamb M (1995) Epigenetic inheritance and evolution: the Lamarckian dimension. Oxford University Press, OxfordGoogle Scholar
  39. Jablonka E, Lamb M (2005) Evolution in four dimensions. MIT Press, CambridgeGoogle Scholar
  40. Jablonka E, Lamb M (2010) Transgenerational epigenetic inheritance. In: Pigliucci M, Müller GB (eds) Evolution: the extended synthesis. MIT Press, Cambridge, pp 137–174Google Scholar
  41. Judson H (1979) The eighth day of creation. Simon and Schuster, New YorkGoogle Scholar
  42. Kauffman S (1993) Origins of order: self-organization and selection in evolution. Oxford University Press, OxfordGoogle Scholar
  43. Keller E (2000a) Is there an organism in this text? In: Sloan P (ed) Controlling our destinies. Notre Dame University Press, Notre Dame, pp 273–288Google Scholar
  44. Keller E (2000b) The century of the gene. Harvard University Press, CambridgeGoogle Scholar
  45. Kevles D, Hood L (1992) The code of codes: scientific and social issues in the Human Genome Project. Harvard University Press, Cambridge, MAGoogle Scholar
  46. Laland KN, Odling-Smee J, Gilbert SF (2008) Evo-devo and niche construction: building bridges. J Exp Biol 310B:549–566Google Scholar
  47. Lau N, Lim L, Weinstein E, Bartel D (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294:858–862CrossRefGoogle Scholar
  48. Lewontin R (1974) The genetic basis of evolutionary change. Columbia University Press, New YorkGoogle Scholar
  49. Lewontin R (1983) Gene, organism, and environment. In: Bendall D (ed) Evolution from molecules to men. Cambridge University Press, Cambridge, pp 273–285Google Scholar
  50. Lewontin R (1992) Biology as ideology. Harper Perennial, New YorkGoogle Scholar
  51. Lewontin R (2000) The triple helix: gene, organism, environment. Harvard University Press, CambridgeGoogle Scholar
  52. Li M, Wang I, Li Y, Bruzel A, Richards A, Toung J, Cheung V (2011) Widespread RNA and DNA sequence differences in the human transcriptome. Science 333:53–58. doi:10.1126/science.1207018 CrossRefGoogle Scholar
  53. Linde Medina M (2010) Natural selection and self-organization: a deep dichotomy in the study of organic form. Ludus Vitalis 18:25–56Google Scholar
  54. Mayr E (1942) Systematics and the origin of species. Columbia University Press, New YorkGoogle Scholar
  55. Mayr E (1959) Where are we? Cold Spring Harbor Symp Quant Biol 24:1–14CrossRefGoogle Scholar
  56. Mayr E (1988) Toward a new philosophy of biology. Harvard University Press, Cambridge, MAGoogle Scholar
  57. Moss L (2002) What genes can’t do. MIT Press, Cambridge, MAGoogle Scholar
  58. Müller G (2010) Epigenetic innovation. In: Pigliucci M, Müller GB (eds) Evolution: the extended synthesis. MIT Press, Cambridge, MA, pp 307–328Google Scholar
  59. Newman S, Müller G (2000) Epigenetic mechanisms of character origination. J Exp Biol 288:304–317Google Scholar
  60. Nowak M, Tarnita C, Wilson EO (2010) The evolution of eusociality. Nature 466:1057–1062CrossRefGoogle Scholar
  61. Odling-Smee J (2010) Niche inheritance. In: Pigliucci M, Müller GB (eds) Evolution: the extended synthesis. MIT Press, Cambridge, pp 175–207Google Scholar
  62. Odling-Smee J, Leland K, Feldman M (2003) Niche construction. Princeton University Press, PrincetonGoogle Scholar
  63. Oyama S, Griffiths P, Gray R (eds) (2001) Cycles of contingency: developmental systems and evolution. MIT Press, Cambridge, MAGoogle Scholar
  64. Pigliucci M (2001) Phenotypic plasticity. Johns Hopkins University Press, BaltimoreGoogle Scholar
  65. Pigliucci M (2010) Phenotypic plasticity. In: Pigliucci M, Müller GB (eds) Evolution: the extended synthesis. MIT Press, Cambridge MA, pp 355–378Google Scholar
  66. Pigliucci M, Kaplan J (2007) Making sense of evolution. University of Chicago Press, ChicagoGoogle Scholar
  67. Pigliucci M, Müller G (2010) Evolution: the extended synthesis. MIT Press, Cambridge, MAGoogle Scholar
  68. Pink R, Wicks K, Caley DP, Punch EM, Jacobs L, Carter DRF (2011) Pseudogenes: pseudo-functional or key regulators in health and disease. RNA 17:792–798CrossRefGoogle Scholar
  69. Prigogine I (1962) Introduction to non-equilibrium thermodynamics. Wiley Interscience, New YorkGoogle Scholar
  70. Provine W (1971) The origins of theoretical population biology. University of Chicago Press, ChicagoGoogle Scholar
  71. Richardson R (2001) Complexity, self-organization and selection. Biol Philos 16:655–683CrossRefGoogle Scholar
  72. Simpson G (1944) Tempo and mode in evolution. Columbia University Press, New YorkGoogle Scholar
  73. Swenson R (2010) Selection is entailed by self-organization and natural selection is a special case. Biol Theory 5:167–181CrossRefGoogle Scholar
  74. Walsh D (2006) Evolutionary essentialism. Br J Philos Sci 57:425–448CrossRefGoogle Scholar
  75. Walsh D, Lewens T, Ariew R (2002) The trials of life: natural selection and random drift. Philos Sci 69:452–473CrossRefGoogle Scholar
  76. Weber B (2007) Fact, phenomenon, and theory in the Darwinian research tradition. Biol Theory 2:168–178CrossRefGoogle Scholar
  77. Weber B (2009) On the emergence of living systems. Biosemiotics 2:343–359CrossRefGoogle Scholar
  78. Weber B (2010) What is life? Defining life in the context of emergent complexity. Orig Life Evol Biosph 40:221–229CrossRefGoogle Scholar
  79. Weber B (2011) Design and its discontents. Synthese 178:271–289CrossRefGoogle Scholar
  80. Weber B, Depew D (2001) Developmental systems, Darwinian evolution, and the unity of science. In: Oyama S, Griffiths P, Gray R (eds) Cycles of contingency: developmental systems and evolution. MIT Press, Cambridge, pp 239–254Google Scholar
  81. Weber B, Depew D (eds) (2003) Evolution and learning: the Baldwin effect revisited. MIT Press, Cambridge, MAGoogle Scholar
  82. West-Eberhard M (2003) Phenotypic plasticity and evolution. Oxford University Press, OxfordGoogle Scholar
  83. Wright S (1931) Evolution in Mendelian populations. Genetics 16:97–159Google Scholar
  84. Young R (1985) Darwinism is social. In: Kohn D (ed) The Darwinian heritage. Princeton University Press, Princeton NJ, pp 609–638Google Scholar

Copyright information

© Konrad Lorenz Institute 2011

Authors and Affiliations

  1. 1.Project on the Rhetoric of InquiryUniversity of IowaIowa CityUSA
  2. 2.Department of Chemistry and BiochemistryCalifornia State UniversityFullertonUSA

Personalised recommendations