Biological Theory

, Volume 6, Issue 1, pp 25–35 | Cite as

Regeneration and Development in Animals

  • Michel Vervoort
Original Paper


Regeneration capabilities are found in most or all animals. Whether regeneration is part of the development of an animal or a distinct phenomenon independent of development is a debatable question. If we consider regeneration as a process belonging to development, similarly to embryogenesis or metamorphosis, the existence of regenerative capabilities in adults can be seen as an argument in favor of the theory that development continues throughout the life of animals. Here I perform a comparative analysis of regeneration versus “classical” developmental processes in animals in order to determine to what extent these processes are inclusive or distinct. I identify the existence of regeneration-specific processes, i.e., processes that occur during the regeneration, but not the initial development, of a given structure. In addition, I find that seemingly similar processes acting during development and regeneration may have differential molecular and cellular bases. I thus conclude that there are significant differences between regeneration processes in adult animals and developmental processes occurring during earlier phases of the life cycle. The existence of regenerative capabilities in adult animals can therefore not be used as an argument in favor of the idea that development spans the whole life.


Cell differentiation Dedifferentiation Development Epimorphosis Molecular mechanisms Regeneration Stem cells 



I am grateful to Pierre Kerner, Lucie Laplane, Michel Morange, Antonine Nicoglou, Thomas Pradeu, and Frédérique Théry for useful discussions and critical reading of this manuscript. My work was supported by the CNRS and the Institut Universitaire de France.


  1. Allan CH, Fleckman P, Fernandes RJ, Hager B, James J, Wisecarver Z, Satterstrom FK, Gutierrez A, Norman A, Pirrone A, Underwood RA, Rubin BP, Zhang M, Ramay HR, Clark JM (2006) Tissue response and Msx1 expression after human fetal digit tip amputation in vitro. Wound Repair Regen 14(4):398–404CrossRefGoogle Scholar
  2. Bäckhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI (2005) Host-bacterial mutualism in the human intestine. Science 307:1915–1920CrossRefGoogle Scholar
  3. Beck CW, Izpisúa Belmonte JC, Christen B (2009) Beyond early development: Xenopus as an emerging model for the study of regenerative mechanisms. Dev Dyn 238(6):1226–1248CrossRefGoogle Scholar
  4. Bely AE, Nyberg KG (2010) Evolution of animal regeneration: re-emergence of a field. Trends Ecol Evol 25(3):161–170CrossRefGoogle Scholar
  5. Bely AE, Sikes JM (2010) Latent regeneration abilities persist following recent evolutionary loss in asexual annelids. Proc Natl Acad Sci USA 107:1464–1469CrossRefGoogle Scholar
  6. Birnbaum KD, Sánchez Alvarado A (2008) Slicing across kingdoms: regeneration in plants and animals. Cell 132(4):697–710CrossRefGoogle Scholar
  7. Brockes JP, Kumar A (2008) Comparative aspects of animal regeneration. Annu Rev Cell Dev Biol 24:525–549CrossRefGoogle Scholar
  8. Bryant SV, Endo T, Gardiner DM (2002) Vertebrate limb regeneration and the origin of limb stem cells. Int J Dev Biol 46(7):887–896Google Scholar
  9. Buckingham M, Montarras D (2008) Skeletal muscle stem cells. Curr Opin Genet Dev 18(4):330–336CrossRefGoogle Scholar
  10. Burton PM, Finnerty JR (2009) Conserved and novel gene expression between regeneration and asexual fission in Nematostella vectensis. Dev Genes Evol 219(2):79–87CrossRefGoogle Scholar
  11. Candia Carnevali MD, Bonasoro F (2001) Microscopic overview of crinoid regeneration. Microsc Res Tech 55(6):403–426CrossRefGoogle Scholar
  12. Carlson MR, Komine Y, Bryant SV, Gardiner DM (2001) Expression of Hoxb13 and Hoxc10 in developing and regenerating Axolotl limbs and tails. Dev Biol 229:396–406CrossRefGoogle Scholar
  13. Chargé SB, Rudnicki MA (2004) Cellular and molecular regulation of muscle regeneration. Physiol Rev 84(1):209–238CrossRefGoogle Scholar
  14. Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Conlon FL, Wang DZ (2006) The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and -differentiation. Nat Genet 38(2):228–233CrossRefGoogle Scholar
  15. Chera S, Ghila L, Dobretz K, Wenger Y, Bauer C, Buzgariu W, Martinou JC, Galliot B (2009) Apoptotic cells provide an unexpected source of Wnt3 signaling to drive Hydra head regeneration. Dev Cell 17(2):279–289CrossRefGoogle Scholar
  16. Christen B, Beck CW, Lombardo A, Slack JM (2003) Regeneration-specific expression pattern of three posterior Hox genes. Dev Dyn 226(2):349–355CrossRefGoogle Scholar
  17. da Silva SM, Gates PB, Brockes JP (2002) The newt ortholog of CD59 is implicated in proximodistal identity during amphibian limb regeneration. Dev Cell 3(4):547–555CrossRefGoogle Scholar
  18. Daughters RS, Chen Y, Slack JM (2011) Origin of muscle satellite cells in the Xenopus embryo. DevelopmentGoogle Scholar
  19. De Angelis L, Berghella L, Coletta M, Lattanzi L, Zanchi M, Cusella-De Angelis MG, Ponzetto C, Cossu G (1999) Skeletal myogenic progenitors originating from embryonic dorsal aorta coexpress endothelial and myogenic markers and contribute to postnatal muscle growth and regeneration. J Cell Biol 147(4):869–878CrossRefGoogle Scholar
  20. De Mulder K, Pfister D, Kuales G, Egger B, Salvenmoser W, Willems M, Steger J, Fauster K, Micura R, Borgonie G, Ladurner P (2009) Stem cells are differentially regulated during development, regeneration and homeostasis in flatworms. Dev Biol 334:198–212CrossRefGoogle Scholar
  21. Echeverri K, Tanaka EM (2002) Ectoderm to mesoderm lineage switching during axolotl tail regeneration. Science 298:1993–1996CrossRefGoogle Scholar
  22. Echeverri K, Clarke JD, Tanaka EM (2001) In vivo imaging indicates muscle fiber dedifferentiation is a major contributor to the regenerating tail blastema. Dev Biol 236:151–164CrossRefGoogle Scholar
  23. Egar MW (1988) Accessory limb production by nerve-induced cell proliferation. Anat Rec 221(1):550–564CrossRefGoogle Scholar
  24. Egar M, Singer M (1972) The role of ependyma in spinal cord regeneration in the urodele, Triturus. Exp Neurol 37(2):422–430CrossRefGoogle Scholar
  25. Endo T, Bryant SV, Gardiner DM (2004) A stepwise model system for limb regeneration. Dev Biol 270:135–145CrossRefGoogle Scholar
  26. Fraune S, Bosch TC (2010) Why bacteria matter in animal development and evolution. Bioessays 32(7):571–580CrossRefGoogle Scholar
  27. Fröbius AC, Genikhovich G, Kürn U, Anton-Erxleben F, Bosch TC (2003) Expression of developmental genes during early embryogenesis of Hydra. Dev Genes Evol 213(9):445–455CrossRefGoogle Scholar
  28. Gabel CV, Antoine F, Chuang CF, Samuel AD, Chang C (2008) Distinct cellular, molecular mechanisms mediate initial axon development, adult-stage axon regeneration in C. elegans. Development 135:1129–1136CrossRefGoogle Scholar
  29. Galis F, Wagner GP, Jockusch EL (2003) Why is limb regeneration possible in amphibians but not in reptiles, birds, and mammals? Evol Dev 5(2):208–220CrossRefGoogle Scholar
  30. Galliot B, Miljkovic-Licina M, Chera S (2006) Hydra: a niche for cell and developmental plasticity. Semin Cell Dev Biol 17:492–502CrossRefGoogle Scholar
  31. Gardiner DM, Blumberg B, Komine Y, Bryant SV (1995) Regulation of HoxA expression in developing and regenerating axolotl limbs. Development 121:1731–1741Google Scholar
  32. Garza-Garcia A, Harris R, Esposito D, Gates PB, Driscoll PC (2009) Solution structure and phylogenetics of Prod1, a member of the three-finger protein superfamily implicated in salamander limb regeneration. PLoS One 4(9):e7123CrossRefGoogle Scholar
  33. Genikhovich G, Kürn U, Hemmrich G, Bosch TC (2006) Discovery of genes expressed in Hydra embryogenesis. Dev Biol 289:466–481CrossRefGoogle Scholar
  34. Geraudie J, Singer M (1985) Necessity of an adequate nerve supply for regeneration of the amputated pectoral fin in the teleost Fundulus. J Exp Zool 234(3):367–374CrossRefGoogle Scholar
  35. Gilbert SF (2003) Developmental Biology, 7th edn. Sinauer Associates Inc., SunderlandGoogle Scholar
  36. Gussoni E, Soneoka Y, Strickland CD, Buzney EA, Khan MK, Flint AF, Kunkel LM, Mulligan RC (1999) Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 401:390–394Google Scholar
  37. Janzen FJ, Phillips PC (2006) Exploring the evolution of environmental sex determination, especially in reptiles. J Evol Biol 19:1775–1784CrossRefGoogle Scholar
  38. Jopling C, Sleep E, Raya M, Martí M, Raya A, Belmonte JC (2010) Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 464:606–609CrossRefGoogle Scholar
  39. Kikuchi K, Holdway JE, Werdich AA, Anderson RM, Fang Y, Egnaczyk GF, Evans T, Macrae CA, Stainier DY, Poss KD (2010) Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. Nature 464:601–605CrossRefGoogle Scholar
  40. Kragl M, Knapp D, Nacu E, Khattak S, Maden M, Epperlein HH, Tanaka EM (2009) Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature 460:60–65CrossRefGoogle Scholar
  41. Kumar A, Godwin JW, Gates PB, Garza-Garcia AA, Brockes JP (2007) Molecular basis for the nerve dependence of limb regeneration in an adult vertebrate. Science 318:772–777CrossRefGoogle Scholar
  42. Lepper C, Conway SJ, Fan CM (2009) Adult satellite cells and embryonic muscle progenitors have distinct genetic requirements. Nature 460:627–631CrossRefGoogle Scholar
  43. Lin G, Chen Y, Slack JM (2007) Regeneration of neural crest derivatives in the Xenopus tadpole tail. BMC Dev Biol 7:56CrossRefGoogle Scholar
  44. Martín-Durán JM, Amaya E, Romero R (2010) Germ layer specification and axial patterning in the embryonic development of the freshwater planarian Schmidtea polychroa. Dev Biol 340:145–158CrossRefGoogle Scholar
  45. Mescher AL (1996) The cellular basis of limb regeneration in urodeles. Int J Dev Biol 40(4):785–795Google Scholar
  46. Miljkovic-Licina M, Chera S, Ghila L, Galliot B (2007) Head regeneration in wild-type Hydra requires de novo neurogenesis. Development 134:1191–1201CrossRefGoogle Scholar
  47. Moore DL, Blackmore MG, Hu Y, Kaestner KH, Bixby JL, Lemmon VP, Goldberg JL (2009) KLF family members regulate intrinsic axon regeneration ability. Science 326:298–301CrossRefGoogle Scholar
  48. Morgan TH (1898) Experimental studies of the regeneration of Planaria maculata. Archiv fur Entwicklungsmechanik der Organismen 7:364–397CrossRefGoogle Scholar
  49. Morgan TH (1901) Regeneration. Macmillan, New YorkGoogle Scholar
  50. Morgan TH (1902) Experimental studies of the internal factors of regeneration in the earthworm. Archiv fur Entwicklungsmechanik der Organismen 14:562–591CrossRefGoogle Scholar
  51. Muneoka K, Bryant SV (1982) Evidence that patterning mechanisms in developing and regenerating limbs are the same. Nature 298:369–371CrossRefGoogle Scholar
  52. Muneoka K, Bryant SV (1984) Cellular contribution to supernumerary limbs in the axolotl, Ambystoma mexicanum. Dev Biol 105:166–178CrossRefGoogle Scholar
  53. Myohara M (2004) Differential tissue development during embryogenesis and regeneration in an Annelid. Dev Dyn 231(2):349–358CrossRefGoogle Scholar
  54. Myohara M, Yoshida-Noro C, Kobari F, Tochinai S (1999) Fragmenting oligochaete Enchytraeus japonensis: a new material for regeneration study. Dev Growth Differ 41:549–555CrossRefGoogle Scholar
  55. Newmark PA, Sánchez Alvarado A (2002) Not your father’s planarian: a classic model enters the era of functional genomics. Nat Rev Genet 3(3):210–219CrossRefGoogle Scholar
  56. Nguyen L, Besson A, Roberts JM, Guillemot F (2006) Coupling cell cycle exit, neuronal differentiation and migration in cortical neurogenesis. Cell Cycle 5:2314–2318CrossRefGoogle Scholar
  57. Politis PK, Thomaidou D, Matsas R (2008) Coordination of cell cycle exit and differentiation of neuronal progenitors. Cell Cycle 7:691–697CrossRefGoogle Scholar
  58. Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, Sadek HA (2011) Transient regenerative potential of the neonatal mouse heart. Science 331:1078–1080CrossRefGoogle Scholar
  59. Poss KD (2010) Advances in understanding tissue regenerative capacity and mechanisms in animals. Nat Rev Genet 11(10):710–722CrossRefGoogle Scholar
  60. Pradeu T (2011) A mixed self: The role of symbiosis in development. Biol Theory. doi: 10.1007/s13752-011-0011-5
  61. Reginelli AD, Wang YQ, Sassoon D, Muneoka K (1995) Digit tip regeneration correlates with regions of Msx1 (Hox 7) expression in fetal and newborn mice. Development 121:1065–1076Google Scholar
  62. Reitzel AM, Burton PM, Krone C, Finnerty JR (2007) Comparison of developmental trajectories in the starlet sea anemone Nematostella vectensis: embryogenesis, regeneration, and two forms of asexual fission. Invertebr Biol 126:99–112CrossRefGoogle Scholar
  63. Rychel AL, Swalla BJ (2008) Anterior regeneration in the hemichordate Ptychodera flava. Dev Dyn 237:3222–3232CrossRefGoogle Scholar
  64. Sánchez Alvarado A (2000) Regeneration in the metazoans: why does it happen? Bioessays 22(6):578–590CrossRefGoogle Scholar
  65. Sánchez Alvarado A (2006) Planarian regeneration: its end is its beginning. Cell 124(2):241–245CrossRefGoogle Scholar
  66. Sánchez Alvarado A, Tsonis PA (2006) Bridging the regeneration gap: Genetic insights from diverse animal models. Nat Rev Genet 7(11):873–884CrossRefGoogle Scholar
  67. Seale P, Rudnicki MA (2000) A new look at the origin, function, and “stem-cell” status of muscle satellite cells. Dev Biol 218:115–124CrossRefGoogle Scholar
  68. Slack JM, Beck CW, Gargioli C, Christen B (2004) Cellular and molecular mechanisms of regeneration in Xenopus. Philos Trans R Soc Lond B 359(1445):745–751CrossRefGoogle Scholar
  69. Slack JM, Lin G, Chen Y (2008) The Xenopus tadpole: a new model for regeneration research. Cell Mol Life Sci 65(1):54–63CrossRefGoogle Scholar
  70. Sugimoto K, Gordon SP, Meyerowitz EM (2011) Regeneration in plants and animals: dedifferentiation, transdifferentiation, or just differentiation? Trends Cell Biol 21(4):212–218CrossRefGoogle Scholar
  71. Sugiura T, Taniguchi Y, Tazaki A, Ueno N, Watanabe K, Mochii M (2004) Differential gene expression between the embryonic tail bud and regenerating larval tail in Xenopus laevis. Dev Growth Differ 46(1):97–105CrossRefGoogle Scholar
  72. Tajbakhsh S (2009) Skeletal muscle stem cells in developmental versus regenerative myogenesis. J Intern Med 266(4):372–389CrossRefGoogle Scholar
  73. Tanaka EM (2003) Cell differentiation and cell fate during urodele tail and limb regeneration. Curr Opin Genet Dev 13(5):497–501CrossRefGoogle Scholar
  74. Théry F (2011) Characterizing animal development with genetic regulatory mechanisms. Biol Theory. doi: 10.1007/s13752-011-0004-4
  75. Thouveny Y, Tassava RA (1998) Regeneration through phylogenesis. In: Ferretti P, Geraudie J (eds) Cellular, molecular basis of regeneration: from invertebrates to humans. Wiley, New York, pp 9–43Google Scholar
  76. Torok MA, Gardiner DM, Shubin NH, Bryant SV (1998) Expression of HoxD genes in developing and regenerating axolotl limbs. Dev Biol 200:225–233CrossRefGoogle Scholar
  77. Towers M, Tickle C (2009) Growing models of vertebrate limb development. Development 136:179–190CrossRefGoogle Scholar
  78. Tsonis PA (2007) Regeneration via transdifferentiation: the lens and hair cells. Hear Res 227(1–2):28–31CrossRefGoogle Scholar
  79. Whitehead GG, Makino S, Lien CL, Keating MT (2005) fgf20 is essential for initiating zebrafish fin regeneration. Science 310:1957–1960CrossRefGoogle Scholar
  80. Wu Z, Ghosh-Roy A, Yanik MF, Zhang JZ, Jin Y, Chisholm AD (2007) Caenorhabditis elegans neuronal regeneration is influenced by life stage, ephrin signaling, and synaptic branching. Proc Natl Acad Sci USA 104:15132–15137CrossRefGoogle Scholar
  81. Yanik MF, Cinar H, Cinar HN, Chisholm AD, Jin Y, Ben-Yakar A (2004) Neurosurgery: functional regeneration after laser axotomy. Nature 432:822CrossRefGoogle Scholar
  82. Yin VP, Poss KD (2008) New regulators of vertebrate appendage regeneration. Curr Opin Genet Dev 18(4):381–386CrossRefGoogle Scholar
  83. Yin VP, Thomson JM, Thummel R, Hyde DR, Hammond SM, Poss KD (2008) Fgf-dependent depletion of microRNA-133 promotes appendage regeneration in zebrafish. Genes Dev 22(6):728–733CrossRefGoogle Scholar
  84. Yokoyama H (2008) Initiation of limb regeneration: the critical steps for regenerative capacity. Dev Growth Differ 50(1):13–22CrossRefGoogle Scholar
  85. Yoshida-Noro C, Tochinai S (2010) Stem cell system in asexual and sexual reproduction of Enchytraeus japonensis (Oligochaeta, Annelida). Dev Growth Differ 52(1):43–55CrossRefGoogle Scholar

Copyright information

© Konrad Lorenz Institute 2011

Authors and Affiliations

  1. 1.Institut Jacques MonodUniversité Paris Diderot and CNRSParisFrance
  2. 2.Institut Universitaire de FranceParisFrance

Personalised recommendations