Biological Theory

, Volume 6, Issue 1, pp 16–24 | Cite as

Characterizing Animal Development with Genetic Regulatory Mechanisms

  • Frédérique ThéryEmail author
Original Paper


Although developmental biology is an institutionalized discipline, no unambiguous account of what development is and when it stops has so far been provided. In this article, I focus on two sets of developmental molecular mechanisms, namely those underlying the heterochronic pathway in C. elegans and those involving Hox genes in vertebrates, to suggest a conceptual account of animal development. I point out that, in these animals, the early stages of life exhibit salient mechanistic features, in particular in the way mechanisms of genetic regulation occur in the organism. Indeed, these stages are characterized by sequential and irreversible changes in gene expression taking place throughout the organism. A general definition of animal development based on these distinctive features implies that, at least for some animal species, development does not go on throughout the life of the animal, contrary to what has recently been claimed by some biologists and philosophers. Instead, in such species, development encompasses various events occurring sequentially at the beginning of life.


Caenorhabditis elegans Development Genetic regulatory mechanisms Heterochronic pathway Hox genes Vertebrates 



I am grateful to Lucie Laplane, Michel Morange, Valérie Ngo-Muller, Antonine Nicoglou, Thomas Pradeu, and Michel Vervoort for fruitful discussions and critical reading of my manuscript.


  1. Ambros V, Horvitz HR (1984) Heterochronic mutants of the nematode Caenorhabditis elegans. Science 226:409–416CrossRefGoogle Scholar
  2. Beckstead RB, Lam G, Thummel CS (2005) The genomic response to 20-hydroxyecdysone at the onset of Drosophila metamorphosis. Genome Biol 6:R99CrossRefGoogle Scholar
  3. Berdasco M, Esteller M (2010) Aberrant epigenetic landscape in cancer: How cellular identity goes awry. Dev Cell 19:698–711CrossRefGoogle Scholar
  4. Büssing I, Slack FJ, Großhans H (2008) let-7 microRNAs in development, stem cells and cancer. Trends Mol Med 14:400–409CrossRefGoogle Scholar
  5. Caygill EE, Johnston LA (2008) Temporal regulation of metamorphic processes in Drosophila by the let-7 and miR-125 heterochronic microRNAs. Curr Biol 18:943–950CrossRefGoogle Scholar
  6. Chalfie M, Horvitz HR, Sulston JE (1981) Mutations that lead to reiterations in the cell lineages of C. elegans. Cell 24:59–69CrossRefGoogle Scholar
  7. Chang HY, Chi J-T, Dudoit S, Bondre C, van de Rijn M, Botstein D, Brown PO (2002) Diversity, topographic differentiation, and positional memory in human fibroblasts. Proc Natl Acad Sci USA 99:12877–12882CrossRefGoogle Scholar
  8. Davidson EH (2006) The regulatory genome. Academic Press, San DiegoGoogle Scholar
  9. Dibner C, Schibler U, Albrecht U (2010) The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol 72:517–549CrossRefGoogle Scholar
  10. Du H, Taylor HS (2004) Molecular regulation of müllerian development by Hox genes. Ann N Y Acad Sci 1034:152–165CrossRefGoogle Scholar
  11. Duboule D, Dollé P (1989) The structural and functional organization of the murine HOX gene family resembles that of Drosophila homeotic genes. EMBO J 8:1497–1505Google Scholar
  12. Erwin DH, Davidson EH (2009) The evolution of hierarchical gene regulatory networks. Nat Rev Genet 10:141–148CrossRefGoogle Scholar
  13. Gardiner DM, Bryant SV (2007) Homeobox-containing genes in limb regeneration. In: Papageorgiou S (ed) HOX gene expression. Landes Bioscience, Austin, pp 102–110CrossRefGoogle Scholar
  14. Gardiner DM, Blumberg B, Komine Y, Bryant SV (1995) Regulation of HoxA expression in developing and regenerating axolotl limbs. Development 121:1731–1741Google Scholar
  15. Gilbert SF (2009) Ageing and cancer as diseases of epigenesist. J Biosci 34:601–604CrossRefGoogle Scholar
  16. Gilbert SF (2010) Developmental biology. Sinauer Associates, SunderlandGoogle Scholar
  17. Iovine MK (2007) Conserved mechanisms regulate outgrowth in zebrafish fins. Nat Chem Biol 3:613–618CrossRefGoogle Scholar
  18. Johnson RL, Riddle RD, Tabin CJ (1994) Mechanisms of limb patterning. Curr Opin Genet Dev 4:535–542CrossRefGoogle Scholar
  19. Kawazoe Y, Sekimoto T, Araki M, Takagi K, Araki K, Yamamura K (2002) Region-specific gastrointestinal Hox code during murine embryonal gut development. Dev Growth Differ 44:77–84CrossRefGoogle Scholar
  20. Laplane L (2011) Stem cells and the temporal boundaries of development: toward a species-dependent view. Biol Theory. doi: 10.1007/s13752-011-0009-z
  21. Morange M (1997) From the regulatory vision of cancer to the oncogene paradigm, 1975–1985. J Hist Biol 30:1–29CrossRefGoogle Scholar
  22. Morange M (2011) Development and aging. Biol Theory. doi: 10.1007/s13752-011-0010-6
  23. Morgan R (2006) Hox genes: a continuation of embryonic patterning? Trends Genet 22:67–69CrossRefGoogle Scholar
  24. Moss EG (2007) Heterochronic genes and the nature of developmental time. Curr Biol 17:R425–R434CrossRefGoogle Scholar
  25. Nimmo RA, Slack FJ (2009) An elegant miRror: MicroRNAs in stem cells, developmental timing and cancer. Chromosoma 118:405–418CrossRefGoogle Scholar
  26. Nolte C, Krumlauf R (2007) Expression of Hox genes in the nervous system of vertebrates. In: Papageorgiou S (ed) HOX gene expression. Landes Bioscience, Austin, pp 14–41CrossRefGoogle Scholar
  27. Oyama S, Griffiths PE, Gray RD (eds) (2001) Cycles of contingency: developmental systems and evolution. MIT Press, Cambridge, MAGoogle Scholar
  28. Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B, Hayward DC, Ball EE, Degnan B, Müller P, Spring J, Srinivasan A, Fishman M, Finnerty J, Corbo J, Levine M, Leahy P, Davidson E, Ruvkun G (2000) Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408:86–89CrossRefGoogle Scholar
  29. Pruett ND, Visconti RP, Jacobs DF, Scholz D, McQuinn T, Sundberg JP, Awgulewitsch A (2008) Evidence for Hox-specified positional identities in adult vasculature. BMC Dev Biol 8:93CrossRefGoogle Scholar
  30. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906CrossRefGoogle Scholar
  31. Rinn JL, Bondre C, Gladstone HB, Brown PO, Chang HY (2006) Anatomic demarcation by positional variation in fibroblast gene expression programs. PloS Genet 2:e119CrossRefGoogle Scholar
  32. Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, Goodnough LH, Helms JA, Farnham PJ, Segal E, Chang HY (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129:1311–1323CrossRefGoogle Scholar
  33. Sempere LF, Dubrovsky EB, Dubrovskaya VA, Berger EM, Ambros V (2002) The expression of the let-7 small regulatory RNA is controlled by ecdysone during metamorphosis in Drosophila melanogaster. Dev Biol 244:170–179CrossRefGoogle Scholar
  34. Sempere LF, Sokol NS, Dubrovsky EB, Berger EM, Ambros V (2003) Temporal regulation of microRNA expression in Drosophila melanogaster mediated by hormonal signals and Broad-Complex gene activity. Dev Biol 259:9–18CrossRefGoogle Scholar
  35. Shah N, Sukumar S (2010) The Hox genes and their roles in oncogenesis. Nat Rev Cancer 10:361–371CrossRefGoogle Scholar
  36. Sokol NS, Xu P, Jan Y-N, Ambros V (2008) Drosophila let-7 microRNA is required for remodeling of the neuromusculature during metamorphosis. Genes Dev 22:1591–1596CrossRefGoogle Scholar
  37. Soshnikova N, Duboule D (2009) Epigenetic regulation of vertebrate Hox genes: a dynamic equilibrium. Epigenetics 4:537–540CrossRefGoogle Scholar
  38. Stathopoulos A, Levine M (2005) Genomic regulatory networks and animal development. Dev Cell 9:449–462CrossRefGoogle Scholar
  39. Stefani G, Slack FJ (2008) Small non-coding RNAs in animal development. Nat Rev Mol Cell Biol 9:219–230CrossRefGoogle Scholar
  40. Thummel CS (2001) Molecular mechanisms of developmental timing in C. elegans and Drosophila. Dev Cell 1:453–465CrossRefGoogle Scholar
  41. Tickle C (2007) The Hox gene network in vertebrate limb development. In: Papageorgiou S (ed) HOX gene expression. Landes Bioscience, Austin, pp 42–52CrossRefGoogle Scholar
  42. Vervoort M (2011) Regeneration and development in animals. Biol Theory. doi: 10.1007/s13752-011-0005-3
  43. Wang KC, Helms JA, Chang HY (2009) Regeneration, repair and remembering identity: the three Rs of Hox gene expression. Trends Cell Biol 19:268–275CrossRefGoogle Scholar
  44. Wellik DM (2009) Hox genes and vertebrate axial patterning. Curr Top Dev Biol 88:257–278CrossRefGoogle Scholar
  45. Yamamoto T, Nakahata Y, Soma H, Akashi M, Mamine T, Takumi T (2004) Transcriptional oscillation of canonical clock genes in mouse peripheral tissues. BMC Mol Biol 5:18CrossRefGoogle Scholar
  46. Zhang H, Fire AZ (2010) Cell autonomous specification of temporal identity by Caenorhabditis elegans microRNA lin-4. Dev Biol 344:603–610CrossRefGoogle Scholar
  47. Zhang EE, Kay SA (2010) Clocks not winding down: Unraveling circadian networks. Nat Rev Mol Cell Biol 11:764–776CrossRefGoogle Scholar

Copyright information

© Konrad Lorenz Institute 2011

Authors and Affiliations

  1. 1.Institut d’Histoire et de Philosophie des Sciences et des TechniquesUniversité Paris 1 Panthéon-SorbonneParisFrance

Personalised recommendations