, Volume 14, Issue 1, pp 3–9 | Cite as

Health effects of erythritol

  • Daniëlle M. P. H. J. BoestenEmail author
  • Gertjan J. M. den Hartog
  • Peter de Cock
  • Douwina Bosscher
  • Angela Bonnema
  • Aalt Bast


Erythritol (1,2,3,4-butanetetrol) is a non-caloric C4 polyol made by fermentation that has a sweetness 60–70% that of sucrose. The safety of erythritol has been consistently demonstrated in animal and human studies. Erythritol has a higher digestive tolerance compared to all other polyols because about 90% of the ingested erythritol is readily absorbed and excreted unchanged in urine. Erythritol is used in a wide range of applications for sweetening and other functionalities, e.g., in beverages, chewing gum and candies. In this review, we summarise the health effects of erythritol described in the literature. We focus on studies involving the anti-cariogenic and endothelial protective effects of erythritol. We conclude that erythritol could be of great importance and could be considered to be the preferred sugar substitute for a rapidly growing population of people with diabetes or pre-diabetes to reduce their risk of developing diabetic complications.


erythritol sweetener health effects anti-cariogenic endothelial diabetes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sreenath K, Venkatesh YP (2008) Analysis of erythritol in foods by polyclonal antibody-based indirect competitive ELISA. Anal Bioanal Chem 391:609–615. doi:  10.1007/s00216-008-2016-x CrossRefGoogle Scholar
  2. 2.
    Bernt WO, Borzelleca JF, Flamm G, Munro IC (1996) Erythritol: a review of biological and toxicological studies. Regul Toxicol Pharmacol 24:S191–197CrossRefGoogle Scholar
  3. 3.
    de Cock P (2012) Erythritol. In: Sweeteners and sugar alternatives in food technology. Wiley-Blackwell, pp 213–241. doi:  10.1002/9781118373941.ch10 Google Scholar
  4. 4.
    Moon HJ, Jeya M, Kim IW, Lee JK (2010) Biotechnological production of erythritol and its applications. Appl Microbiol Biotechnol 86:1017–1025. doi:  10.1007/s00253-010-2496-4 CrossRefGoogle Scholar
  5. 5.
    Munro IC, Berndt WO, Borzelleca JF, Flamm G, Lynch BS, Kennepohl E, Bar EA, Modderman J, Bernt WO (1998) Erythritol: an interpretive summary of biochemical, metabolic, toxicological and clinical data. Food Chem Toxicol 36:1139–1174CrossRefGoogle Scholar
  6. 6.
    Waalkens-Berendsen DH, Smits-van Prooije AE, Wijnands MV, Bar A (1996) Two-generation reproduction study of erythritol in rats. Regul Toxicol Pharmacol 24:S237–246CrossRefGoogle Scholar
  7. 7.
    Shimizu M, Katoh M, Imamura M, Modderman J (1996) Teratology study of erythritol in rabbits. Regul Toxicol Pharmacol 24:S247–253. doi:  10.1006/rtph.1996.0105 CrossRefGoogle Scholar
  8. 8.
    Kawamura Y, Saito Y, Imamura M, Modderman JP (1996) Mutagenicity studies on erythritol in bacterial reversion assay systems and in Chinese hamster fibroblast cells. Regul Toxicol Pharmacol 24:S261–263CrossRefGoogle Scholar
  9. 9.
    Chung YS, Lee M (2013) Genotoxicity assessment of erythritol by using short-term assay. Toxicol Res 29:249–255. doi:  10.5487/tr.2013.29.4.249 CrossRefGoogle Scholar
  10. 10.
    Shi X, Schedl HP, Summers RM, Lambert GP, Chang RT, Xia T, Gisolfi CV (1997) Fructose transport mechanisms in humans. Gastroenterology 113:1171–1179CrossRefGoogle Scholar
  11. 11.
    Kellett GL, Brot-Laroche E (2005) Apical GLUT2: a major pathway of intestinal sugar absorption. Diabetes 54:3056–3062CrossRefGoogle Scholar
  12. 12.
    Gibson PR, Newnham E, Barrett JS, Shepherd SJ, Muir JG (2007) Review article: fructose malabsorption and the bigger picture. Aliment Pharmacol Ther 25:349–363. doi:  10.1111/j.1365-2036.2006.03186.x CrossRefGoogle Scholar
  13. 13.
    Bornet FR, Blayo A, Dauchy F, Slama G (1996) Gastrointestinal response and plasma and urine determinations in human subjects given erythritol. Regul Toxicol Pharmacol 24:S296–302. doi:  10.1006/rtph.1996.0111 CrossRefGoogle Scholar
  14. 14.
    Bornet FRJ, Blayo A, Dauchy F, Slama G (1996) Plasma and urine kinetics of erythritol after oral ingestion by healthy humans. Regul Toxicol Pharmacol 24:S280–S285. doi: CrossRefGoogle Scholar
  15. 15.
    Hiele M, Ghoos Y, Rutgeerts P, Vantrappen G (1993) Metabolism of erythritol in humans: comparison with glucose and lactitol. Br J Nutr 69:169–176CrossRefGoogle Scholar
  16. 16.
    Arrigoni E, Brouns F, Amado R (2005) Human gut microbiota does not ferment erythritol. Br J Nutr 94:643–646CrossRefGoogle Scholar
  17. 17.
    Beards E, Tuohy K, Gibson G (2010) Bacterial, SCFA and gas profiles of a range of food ingredients following in vitro fermentation by human colonic microbiota. Anaerobe 16:420–425. doi:  10.1016/j.anaerobe.2010.05.006 CrossRefGoogle Scholar
  18. 18.
    Tetzloff W, Dauchy F, Medimagh S, Carr D, Bar A (1996) Tolerance to subchronic, high-dose ingestion of erythritol in human volunteers. Regul Toxicol Pharmacol 24:S286–295. doi:  10.1006/rtph.1996.0110 CrossRefGoogle Scholar
  19. 19.
    Storey D, Lee A, Bornet F, Brouns F (2007) Gastrointestinal tolerance of erythritol and xylitol ingested in a liquid. Eur J Clin Nutr 61:349–354. doi:  10.1038/sj.ejcn.1602532 CrossRefGoogle Scholar
  20. 20.
    Oku T, Okazaki M (1996) Laxative threshold of sugar alcohol erythritol in human subjects. Nutr Res 16:577–589. doi: Scholar
  21. 21.
    Noda K, Nakayama K, Oku T (1994) Serum glucose and insulin levels and erythritol balance after oral administration of erythritol in healthy subjects. Eur J Clin Nutr 48:286–292Google Scholar
  22. 22.
    Rosan B, Lamont RJ (2000) Dental plaque formation. Microbes Infect 2:1599–1607. doi: Scholar
  23. 23.
    Kawanabe J, Hirasawa M, Takeuchi T, Oda T, Ikeda T (1992) Noncariogenicity of erythritol as a substrate. Caries Res 26:358–362CrossRefGoogle Scholar
  24. 24.
    Makinen KK, Saag M, Isotupa KP, Olak J, Nommela R, Soderling E, Makinen PL (2005) Similarity of the effects of erythritol and xylitol on some risk factors of dental caries. Caries Res 39:207–215. doi:  10.1159/000084800 CrossRefGoogle Scholar
  25. 25.
    Hashino E, Kuboniwa M, Alghamdi SA, Yamaguchi M, Yamamoto R, Cho H, Amano A (2013) Erythritol alters microstructure and metabolomic profiles of biofilm composed of Streptococcus gordonii and Porphyromonas gingivalis. Mol Oral Microbiol 28:435–451. doi:  10.1111/omi.12037 CrossRefGoogle Scholar
  26. 26.
    Runnel R, Mäkinen KK, Honkala S, Olak J, Mäkinen P-L, Nõmmela R, Vahlberg T, Honkala E, Saag M (2013) Effect of three-year consumption of erythritol, xylitol and sorbitol candies on various plaque and salivary caries-related variables. J Dent 41:1236–1244. doi: CrossRefGoogle Scholar
  27. 27.
    Honkala S, Runnel R, Saag M, Olak J, Nommela R, Russak S, Makinen PL, Vahlberg T, Falony G, Makinen K, Honkala E (2014) Effect of erythritol and xylitol on dental caries prevention in children. Caries Res 48:482–490. doi:  10.1159/000358399 CrossRefGoogle Scholar
  28. 28.
    Ching TL, Haenen GR, Bast A (1993) Cimetidine and other H2 receptor antagonists as powerful hydroxyl radical scavengers. Chem Biol Interact 86:119–127CrossRefGoogle Scholar
  29. 29.
    Shen B, Jensen RG, Bohnert HJ (1997) Mannitol protects against oxidation by hydroxyl radicals. Plant Physiol 115:527–532Google Scholar
  30. 30.
    den Hartog GJ, Boots AW, Adam-Perrot A, Brouns F, Verkooijen IW, Weseler AR, Haenen GR, Bast A (2010) Erythritol is a sweet antioxidant. Nutrition 26:449–458. doi:  10.1016/j.nut.2009.05.004 CrossRefGoogle Scholar
  31. 31.
    Yokozawa T, Kim HY, Cho EJ (2002) Erythritol attenuates the diabetic oxidative stress through glucose metabolism and lipid peroxidation in streptozotocin-induced diabetic rats. J Agric Food Chem 50:5485–5489CrossRefGoogle Scholar
  32. 32.
    Furchgott RF, Jothianandan D (1991) Endothelium-dependent and-independent vasodilation involving cyclic GMP: Relaxation induced by nitric oxide, carbon monoxide and light. J Vasc Res 28:52–61Google Scholar
  33. 33.
    Grieve DJ, Avella MA, Botham KM, Elliott J (1998) Effects of chylomicrons remnants on endothelium-dependent relaxation of rat aorta. Eur J Pharmacol 348:181–190CrossRefGoogle Scholar
  34. 34.
    Praticò D (2005) Antioxidants and endothelium protection. Atherosclerosis 181:215–224CrossRefGoogle Scholar
  35. 35.
    Roberts AC, Porter KE (2013) Cellular and molecular mechanisms of endothelial dysfunction in diabetes. Diabetes Vasc Dis Res. doi:  10.1177/1479164113500680 Google Scholar
  36. 36.
    Boesten DMPHJ, Berger A, de Cock P, Dong H, Hammock BD, den Hartog GJM, Bast A (2013) Multi-targeted mechanisms underlying the endothelial protective effects of the diabetic-safe sweetener erythritol. PLoS One 8:e65741. doi:  10.1371/journal.pone.0065741 CrossRefGoogle Scholar
  37. 37.
    Weseler AR, Ruijters EJB, Drittij-Reijnders M-J, Reesink KD, Haenen GRMM, Bast A (2011) Pleiotropic benefit of monomeric and oligomeric flavanols on vascular health: a randomized controlled clinical pilot study. PLoS One 6:e28460. doi:  10.1371/journal.pone.0028460 CrossRefGoogle Scholar
  38. 38.
    Weseler AR, Bast A (2012) Pleiotropic-acting nutrients require integrative investigational approaches: the example of flavonoids. J Agric Food Chem 60:8941–8946. doi:  10.1021/jf3000373 CrossRefGoogle Scholar
  39. 39.
    Flint N, Hamburg N, Holbrook M, Dorsey P, LeLeiko R, Berger A, de Cock P, Bosscher D, Vita J (2013) Effects of erythritol on endothelial function in patients with type 2 diabetes mellitus: a pilot study. Acta Diabetol 51:513–516. doi:  10.1007/s00592-013-0534-2 Google Scholar

Copyright information

© CEC editore - Springer-Verlag Italia 2015

Authors and Affiliations

  • Daniëlle M. P. H. J. Boesten
    • 1
    Email author
  • Gertjan J. M. den Hartog
    • 1
  • Peter de Cock
    • 2
  • Douwina Bosscher
    • 2
  • Angela Bonnema
    • 3
  • Aalt Bast
    • 1
  1. 1.Department of ToxicologyMaastricht UniversityMaastrichtThe Netherlands
  2. 2.Cargill R&D Center EuropeVilvoordeBelgium
  3. 3.Cargill R&D CenterMinneapolisUSA

Personalised recommendations