Nutrafoods

, Volume 13, Issue 1, pp 13–27 | Cite as

The role of superoxide dismutase (SOD) in skin disorders

A review
  • Sébastien Le Quéré
  • Dominique Lacan
  • Benoit Lemaire
  • Julie Carillon
  • Karine Schmitt
Review
  • 186 Downloads

Abstract

Environmental stress factors attack body cells daily. As skin is the first barrier to exogenous threats, such as UV exposure, chemicals and pathogens, a proper strategy to prevent skin inflammation is necessary. As the environment tends to strip away the nutrients essential to maintain the skin’s hydrolipidic barrier, restoration of the skin’s natural antioxidant balance seems to be an alternative and convenient method to maintain healthy skin. At the moment, many studies have considered superoxide dismutase (SOD) as a good agent for the prevention or the therapeutic treatment of skin inflammation. Therefore, we will discuss the mechanism of action of SOD in numerous skin disorders and evaluate whether the use of a powerful antioxidant like SOD B can help deliver benefits against skin alterations.

Keywords

skin, superoxide dismutase reactive oxygen species UV radiation inflammation fibrosis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bickers DR, Athar M (2006) Oxidative stress in the pathogenesis of skin disease. J Invest Dermatol 126(12):2565–2575CrossRefGoogle Scholar
  2. 2.
    Chen L, Hu JY, Wang SQ (2012) The role of antioxidants in photoprotection: a critical review. J Am Acad Dermatol 67(5):1013–1024CrossRefGoogle Scholar
  3. 3.
    Reuter S, Gupta S, Chaturvedi M, Aggarwal B (2010) Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 49(11):1603–1616CrossRefGoogle Scholar
  4. 4.
    Kim Y, Kim BH, Lee H et al (2011) Regulation of skin inflammation and angiogenesis by EC-SOD via HIF-1α and NF-κB pathways. Free Radic Biol Med 5151(11):1985–199CrossRefGoogle Scholar
  5. 5.
    Bafana A, Dutt S, Kumar A, Kumar S, Ahuja P (2011) The basic and applied aspects of superoxide dismutase. J Molec Catal B 68(2):129–138CrossRefGoogle Scholar
  6. 6.
    Huber W (1981) Orgotein—(bovine Cu-Zn superoxide dismutase), an anti-inflammatory protein drug: discovery, toxicology and pharmacology. Eur J Rheumatol Inflamm 4(2):173–182Google Scholar
  7. 7.
    Menander-Huber KB, Edsmyr F, Huber W (1978) Orgotein (superoxide dismutase): a drug for the amelioration of radiation-induced side effects. Urol Res 6(4):255–257CrossRefGoogle Scholar
  8. 8.
    McIlwain H, Silverfield JC, Cheatum DE et al (1989) Intraarticular orgotein in osteoarthritis of the knee: a placebocontrolled efficacy, safety, and dosage comparison. Am J Med 87(3):295–300CrossRefGoogle Scholar
  9. 9.
    Kwon M-J, Kim B, Lee YS, Kim T-Y (2012) Role of superoxide dismutase 3 in skin inflammation. J Dermatol Sci 67(2):81–87CrossRefGoogle Scholar
  10. 10.
    Ookawara T, Imazeki N, Matsubara O et al (1998) Tissue distribution of immunoreactive mouse extracellular superoxide dismutase. Am J Physiol 275(3 Pt 1):C840–847Google Scholar
  11. 11.
    Shofian N, Hamid A, Osman A et al (2011) Effect of freezedrying on the antioxidant compounds and antioxidant activity of selected tropical fruits. Int J Molec Sci 12(7):4678–4692CrossRefGoogle Scholar
  12. 12.
    Orak H, Aktas T, Yagar H, Isbilir S, Ekinci N, Sahin F (2011) Antioxidant activity, some nutritional and colour properties of vacuum dried strawberry tree (Arbutus unedo L.) fruit. Acta Scientiarum Polonorum 10(3):327–338Google Scholar
  13. 13.
    Carillon J, Rouanet J, Cristol J, Brion R (2013) Superoxide dismutase administration, a potential therapy against oxidative stress related diseases: several routes of supplementation and proposal of an original mechanism of action. Pharm Res 30(11):2718–2728CrossRefGoogle Scholar
  14. 14.
    Cui Y, Robertson J, Maharaj S et al (2011) Oxidative stress contributes to the induction and persistence of TGF-beta1 induced pulmonary fibrosis. Int J Biochem Cell Biol 43(8):1122–1133CrossRefGoogle Scholar
  15. 15.
    Andersen HR, Nielsen JB, Nielsen F, Grandjean P (1997) Antioxidative enzyme activities in human erythrocytes. Clin Chem 43(4):562–568Google Scholar
  16. 16.
    Poljsak B, Dahmane R (2012) Free radicals and extrinsic skin aging. Dermatol Res Pract (135206):4Google Scholar
  17. 17.
    Jurkiewicz B, Buettner G (1994) Ultraviolet light-induced free radical formation in skin: an electron paramagnetic resonance study. Photochem Photobiol 59(1):1–4CrossRefGoogle Scholar
  18. 18.
    Scharffetter-Kochanek K, Brenneisen P, Wenk J et al (2000) Photoaging of the skin from phenotype to mechanisms. Exp Gerontol 35(3):307–316CrossRefGoogle Scholar
  19. 19.
    Takahashi H, Hashimoto Y, Aoki N, Kinouchi M, Ishida-Yamamoto A, Iizuka H (2000) Copper, zinc-superoxide dismutase protects from ultraviolet B-induced apoptosis of SV40-transformed human keratinocytes: the protection is associated with the increased levels of antioxidant enzymes. J Dermatol Sci 23(1):12–21CrossRefGoogle Scholar
  20. 20.
    Filipe P, Emerit I, Vassy J et al (1997) Epidermal localization and protective effects of topically applied superoxide dismutase. Exp Dermatol 6(3):116–121CrossRefGoogle Scholar
  21. 21.
    Sasaki H, Akamatsu H, Horio T (2000) Protective role of copper, zinc superoxide dismutase against UVB-induced injury of the human keratinocyte cell line HaCaT. J Invest Dermatol 114(3):502–507CrossRefGoogle Scholar
  22. 22.
    Morel C, Lacan D (2000) Evaluation de l’activité protectrice de SOD by Bionov® vis-à-vis du rayonnement UV sur kératinocytes humains normaux.Google Scholar
  23. 23.
    Di Mambro VM, Fonseca MJ (2007) Assessment of physical and antioxidant activity stability, in vitro release and in vivo efficacy of formulations added with superoxide dismutase alone or in association with alpha-tocopherol. Eur J Pharm Biopharm 66(3):451–459CrossRefGoogle Scholar
  24. 24.
    Lods LM, Dres C, Johnson C, Scholz DB, Brooks GJ (2000) The future of enzymes in cosmetics. Int J Cosmet Sci 22(2):85–94CrossRefGoogle Scholar
  25. 25.
    Murakami K, Inagaki J, Saito M et al (2009) Skin atrophy in cytoplasmic SOD-deficient mice and its complete recovery using a vitamin C derivative. Biochem Biophys Res Commun 382(2):457–461CrossRefGoogle Scholar
  26. 26.
    Iuchi Y, Roy D, Okada F et al (2010) Spontaneous skin damage and delayed wound healing in SOD1-deficient mice. Mol Cell Biochem 341(1):181–194CrossRefGoogle Scholar
  27. 27.
    Rasik A, Shukla A (2000) Antioxidant status in delayed healing type of wounds. Int J Exp Pathol 81(4):257–263CrossRefGoogle Scholar
  28. 28.
    Vorauer-Uhl K, Furnschlief E, Wagner A, Ferko B, Katinger H (2001) Topically applied liposome encapsulated superoxide dismutase reduces postburn wound size and edema formation. Eur J Pharm Sci 14(1):63–67CrossRefGoogle Scholar
  29. 29.
    Churgin S, Callaghan M, Galiano R, Blechman K, Ceradini D, Gurtner G (2005) Therapeutic administration of superoxide dismutase (SOD) mimetics normalizes wound healing in diabetic mice. J Am Coll Surg 201(3, Suppl):S57CrossRefGoogle Scholar
  30. 30.
    Gabbiani G (1994) Modulation of fibroblastic cytoskeletal features during wound healing and fibrosis. Pathol Res Pract 190(9–10):851–853CrossRefGoogle Scholar
  31. 31.
    Vozenin-Brotons MC, Sivan V, Gault N et al (2001) Antifibrotic action of Cu/Zn SOD is mediated by TGF-beta1 repression and phenotypic reversion of myofibroblasts. Free Radic Biol Med 30(1):30–42CrossRefGoogle Scholar
  32. 32.
    Delanian S, Martin M, Bravard A, Luccioni C, Lefaix JL (2001) Cu/Zn superoxide dismutase modulates phenotypic changes in cultured fibroblasts from human skin with chronic radiotherapy damage. Radiother Oncol 58(3):325–331CrossRefGoogle Scholar
  33. 33.
    Delanian S, Baillet F, Huart J, Lefaix JL, Maulard C, Housset M (1994) Successful treatment of radiation-induced fibrosis using liposomal Cu/Zn superoxide dismutase: clinical trial. Radiother Oncol 32(1):12–20CrossRefGoogle Scholar
  34. 34.
    Campana F, Zervoudis S, Perdereau B et al (2004) Topical superoxide dismutase reduces post-irradiation breast cancer fibrosis. J Cell Mol Med 8(1):109–116CrossRefGoogle Scholar
  35. 35.
    Lefaix JL, Delanian S, Leplat JJ et al (1996) Successful treatment of radiation-induced fibrosis using Cu/Zn-SOD and Mn-SOD: an experimental study. Int J Radiat Oncol Biol Phys 35(2):305–312CrossRefGoogle Scholar
  36. 36.
    Martin M, Delanian S, Sivan V et al (2000) Fibrose superficielle radio-induite et TGF-β1. Cancer/Radiothérapie 4(5):369–384CrossRefGoogle Scholar
  37. 37.
    Goldman MP, Hexsel D (2009) Cellulite: pathophysiology and treatment (2nd ed.). Informa HealthcareGoogle Scholar
  38. 38.
    Nürnberger F, Müller G (1978) So-called cellulite: an invented disease. J Dermatol Surg Oncol 4(3):221–229Google Scholar
  39. 39.
    Mirrashed F, Sharp JC, Krause V, Morgan J, Tomanek B (2004) Pilot study of dermal and subcutaneous fat structures by MRI in individuals who differ in gender, BMI, and cellulite grading. Skin Res Technol 10(3):161–168CrossRefGoogle Scholar
  40. 40.
    Schmitt K, Simoneau G, Lemaire B, Lacan D (2012) A double-blind, randomized placebo controlled clinical study demonstrates Cellulight® activity on celluliteGoogle Scholar
  41. 41.
    Basak P, Gultekin F, Kilinc I (2001) The role of the antioxidative defense system in papulopustular acne. J Dermatol 28(3):123–127Google Scholar
  42. 42.
    Akamatsu H, Horio T (1998) The possible role of reactive oxygen species generated by neutrophils in mediating acne inflammation. Dermatology 196(1):82–85CrossRefGoogle Scholar
  43. 43.
    Grange P, Chereau C, Raingeaud J et al (2009) Production of superoxide anions by keratinocytes initiates P. acnes-induced inflammation of the skin. PLoS Pathogens 5(7):e1000527CrossRefGoogle Scholar
  44. 44.
    Sarici G, Cinar S, Armutcu F, Altinyazar C, Koca R, Tekin N (2010) Oxidative stress in acne vulgaris. J Eur Acad Dermatol Venereol 24(7):763–767CrossRefGoogle Scholar
  45. 45.
    Al-Shobaili H, Alzolibani A, Al Robaee A, Meki A, Rasheed Z (2013) Biochemical markers of oxidative and nitrosative stress in acne vulgaris: correlation with disease activity. J Clin Lab Anal 27(1):45–52CrossRefGoogle Scholar
  46. 46.
    Holland D, Jeremy A (2005) The role of inflammation in the pathogenesis of acne and acne scarring. Semin Cutan Med Surg 24(2):79–83CrossRefGoogle Scholar
  47. 47.
    Ehrlich H, Desmouliere A, Diegelmann R et al (1994) Morphological and immunochemical differences between keloid and hypertrophic scar. Am J Pathol 145(1):105–113Google Scholar
  48. 48.
    Pujari V, Suryakar A, Ireddy S (2009) Oxidants and antioxidant status in psoriasis patients. Biochem Res 21:221–223Google Scholar
  49. 49.
    Gornicki A, Gutsze A (2001) Erythrocyte membrane fluidity changes in psoriasis: an EPR study. J Dermatol Sci 27(1):27–30CrossRefGoogle Scholar
  50. 50.
    Schallreuter KU, Moore J, Wood JM et al (1999) In vivo and in vitro evidence for hydrogen peroxide (H2O2) accumulation in the epidermis of patients with vitiligo and its successful removal by a UVB-activated pseudocatalase. J Investig Dermatol Symp Proc 4(1):91–96CrossRefGoogle Scholar
  51. 51.
    Dell’Anna ML, Maresca V, Briganti S, Camera E, Falchi M, Picardo M (2001) Mitochondrial impairment in peripheral blood mononuclear cells during the active phase of vitiligo. J Investig Dermatol 117(4):908–913CrossRefGoogle Scholar
  52. 52.
    Sanclemente G, Garcia JJ, Zuleta JJ, Diehl C, Correa C, Falabella R (2008) A double-blind, randomized trial of 0.05% betamethasone vs. topical catalase/dismutase superoxide in vitiligo. J Eur Acad Dermatol Venereol 22(11):1359–1364CrossRefGoogle Scholar
  53. 53.
    Yuksel EP, Aydin F, Senturk N, Canturk T, Turanli AY (2009) Comparison of the efficacy of narrow band ultraviolet B and narrow band ultraviolet B plus topical catalase-superoxide dismutase treatment in vitiligo patients. Eur J Dermatol 19(4):341–344Google Scholar
  54. 54.
    Yones S, Palmer R, Garibaldinos T, Hawk J (2007) Randomized double-blind trial of treatment of vitiligo: efficacy of psoralen-UV-A therapy vs narrowband-UV-B therapy. Arch Dermatol 143(5):578–584CrossRefGoogle Scholar
  55. 55.
    Faria B, Contreras S, Ferreira F et al (2005) Vitiligo and Extramel therapeutic action. XLI Reunión Anual de la Sociedad Venezolana de Dermatología y Cirugía Dermatológica: Dermatología VenezolanaGoogle Scholar
  56. 56.
    Diehl C, Lipozencic J, Ledic-Drvar D (2009) The basis of topical superoxide dismutase antipruritic activity. Acta Dermatovenerol Croatica 17(1):25–39Google Scholar
  57. 57.
    Blasing H, Hendrix S, Paus R (2005) Pro-inflammatory cytokines upregulate the skin immunoreactivity for NGF, NT-3, NT-4 and their receptor, p75NTR in vivo: a preliminary report. Arch Dermatol Res 296(12):580–584CrossRefGoogle Scholar
  58. 58.
    Mohri D, Satomi F, Kondo E, Fukuoka T, Sakagami M, Noguchi K (2001) Change in gene expression in facial nerve nuclei and the effect of superoxide dismutase in a rat model of ischemic facial paralysis. Brain Res 893(1–2):227–236CrossRefGoogle Scholar
  59. 59.
    Tsukahara H, Shibata R, Ohshima Y et al (2003) Oxidative stress and altered antioxidant defenses in children with acute exacerbation of atopic dermatitis. Life Sci 72(22): 2509–2516CrossRefGoogle Scholar
  60. 60.
    Niwa Y, Iizawa O (1994) Abnormalities in serum lipids and leukocyte superoxide dismutase and associated cataract formation in patients with atopic dermatitis. Arch Dermatol 130(11):1387–1392CrossRefGoogle Scholar

Copyright information

© CEC editore - Springer-Verlag Italia 2014

Authors and Affiliations

  • Sébastien Le Quéré
    • 1
  • Dominique Lacan
    • 1
  • Benoit Lemaire
    • 1
  • Julie Carillon
    • 1
  • Karine Schmitt
    • 1
  1. 1.Bionov — Site AgroparcBâtiment Orion Chemin des Meinajaries, CS 80501Avignon 9France

Personalised recommendations