, Volume 11, Issue 4, pp 151–164 | Cite as

Innovative probiotics and systemic bioactive metabolites. Anti-ageing potential

  • Luca MognaEmail author
  • Giovanni Mogna
Original Research


The benefits attributed to probiotics are increasing steadily. In addition to positive effects on intestinal microbiota and bowel functioning, growing evidence suggests the systemic importance of some strains, in many cases ascribable to the production of bioactive metabolites. This study investigated the ability of selected probiotic microorganisms to synthesise folates and antioxidant molecules, and to lower plasma cholesterol concentration. These activities have been exhaustively evaluated and quantified by in vitro and animal model studies and, in the case of vitamin B9, also by a pilot human intervention trial.

Bifidobacterium catenulatum/pseudocatenulatum BA 03, B. lactis BA 05 and B. pseudocatenulatum BC 01 showed a significant production of folates, maintained also in the human gut. The strains Lactobacillus acidophilus LA 06, L. brevis LBR 01 and B. lactis BS 05 were characterised by their ability to synthesise molecules with antioxidant capacity, with particular reference to glutathione and superoxide dismutase (SOD). B. bifidum MB 109, B. breve MB 113, B. lactis MB 2409, B. bifidum BB 06, B. lactis BS 07 and B. infantis BI 02 showed two, in some ways complementary, mechanisms capable of mediating the reduction of plasma cholesterol. This study confirmed the characteristic of specific probiotic bacteria to synthesise bioactive metabolites that can be absorbed through the intestinal mucosa, therefore becoming systemically relevant. In particular, folates, antioxidant molecules and the active lowering of plasma cholesterol, a well known cardiovascular risk factor, may play an important role in healthy ageing.


probiotics folates antioxidants cholesterol-lowering effect healthy ageing bioactive metabolites 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Savage DC (1977) Microbial ecology of the gastrointestinal tract. Ann Rev Microbiol 31:107–133CrossRefGoogle Scholar
  2. 2.
    Lee J (1985) Neglected niches: the microbial ecology of the gastrointestinal tract. In: Advances in microbial ecology. Plenum Press, New York, pp 115–162CrossRefGoogle Scholar
  3. 3.
    Conway PL (1995) Microbial ecology of the human large intestine. In: Human colonic bacteria, CRC Press, Boca Raton, FL, pp 1–24Google Scholar
  4. 4.
    Savage DC (1979) Introduction to mechanisms of association of indigenous microbes. Am J Clin Nutr 32:113–118Google Scholar
  5. 5.
    Mai V (2004) Dietary modification of the intestinal microbiota. Nutr Rev 62:235–242CrossRefGoogle Scholar
  6. 6.
    Nava GM, Stappenbeck TS (2011) Diversity of the autochthonous colonic microbiota. Gut Microbes 2:99–104CrossRefGoogle Scholar
  7. 7.
    Joint FAO/WHO Working Group (2002) Guidelines for the evaluation of probiotics in food. London, Ontario, CanadaGoogle Scholar
  8. 8.
    Pregliasco F, Anselmi G, Fonte L et al (2008) A new chance of preventing winter diseases by the administration of symbiotic formulations. J Clin Gastroenterol 42[Suppl 3]:S224–S233CrossRefGoogle Scholar
  9. 9.
    Aureli P, Capurso L, Castellazzi AM et al (2011) Probiotics and health: an evidence-based review. Pharmacol Res 63:366–376CrossRefGoogle Scholar
  10. 10.
    Johnston BC, Goldenberg JZ, Vandvik PO et al (2011) Probiotics for the prevention of pediatric antibiotic-associated diarrhea. Cochrane Database Syst Rev 11:CD004827Google Scholar
  11. 11.
    Saavedra JM, Bauman NA, Oung I et al (1994) Feeding of Bifidobacterium bifidum and Streptococcus thermophilus to infants in hospital for prevention of diarrhoea and shedding of rotavirus. Lancet 344:1046–1049CrossRefGoogle Scholar
  12. 12.
    Savino F, Cordisco L, Tarasco V et al (2011) Antagonistic effect of Lactobacillus strains against gas-producing coliforms isolated from colicky infants. BMC Microbiol 11:157CrossRefGoogle Scholar
  13. 13.
    Kalliomäki M, Salminen S, Arvilommi H et al (2001) Probiotics in primary prevention of atopic disease: a randomised, placebo controlled trial. Lancet 357:1076–1079CrossRefGoogle Scholar
  14. 14.
    Drago L, Iemoli E, Rodighiero V et al (2011) Effects of Lactobacillus salivarius LS01 (DSM 22775) treatment on adult atopic dermatitis: a randomized placebo-controlled study. Int J Immunopathol Pharmacol 24:1037–1048Google Scholar
  15. 15.
    Matsuzaki T, Chin J (2000) Modulating immune responses with probiotic bacteria. Immunol Cell Biol 78:67–73CrossRefGoogle Scholar
  16. 16.
    LeBlanc JG, Laiño JE, del Valle MJ et al (2011) B-group vitamin production by lactic acid bacteria-current knowledge and potential applications. J Appl Microbiol 111:1297–1309CrossRefGoogle Scholar
  17. 17.
    Patel AK, Singhania RR, Pandey A, Chincholkar SB (2010) Probiotic bile salt hydrolase: current developments and perspectives. Appl Biochem Biotechnol 162:166–180CrossRefGoogle Scholar
  18. 18.
    Martarelli D, Verdenelli MC, Scuri S et al (2011) Effect of a probiotic intake on oxidant and antioxidant parameters in plasma of athletes during intense exercise training. Curr Microbiol 62:1689–1696CrossRefGoogle Scholar
  19. 19.
    Rossi M, Corradini C, Amaretti A et al (2005) Fermentation of fructooligosaccharides and inulin by bifidobacteria: a comparative study in pure and fecal cultures. Appl Environ Microbiol 71:6150–6158CrossRefGoogle Scholar
  20. 20.
    Keagy PM, Oace SM (1989) Rat bioassay of wheat bran folate and effects of intestinal bacteria. J Nutr 119:1932–1939Google Scholar
  21. 21.
    Cooper BA (1973) Superiority of simplified assay for folate with Lactobacillus casei ATCC 7469 over assay with chloramphenicol-adapted strain. J Clin Pathol 26:963–967CrossRefGoogle Scholar
  22. 22.
    Morelli L, Zonenschain D, Callegari ML et al (2003) Assessment of a new synbiotic preparation in healthy volunteers: survival, persistence of probiotic strains and its effect on the indigenous flora. Nutr J 2:11CrossRefGoogle Scholar
  23. 23.
    Kullisar T, Zilmer M, Mikelsaar M et al (2002) Two antioxidative lactobacilli strains as promising probiotics. Int J Microbiol 72:215–224CrossRefGoogle Scholar
  24. 24.
    Lin MY, Yen CL (1999) Antioxidative ability of lactic acid bacteria. J Agric Food Chem 47:1460–1466CrossRefGoogle Scholar
  25. 25.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275Google Scholar
  26. 26.
    Agil R, Hosseinian F (2012) Dual functionality of triticale as a novel dietary source of prebiotics with antioxidant activity in fermented dairy products. Plant Foods Hum Nutr 67:88–93CrossRefGoogle Scholar
  27. 27.
    Davies MH, Birt DF, Schnell RC (1984) Direct enzymatic assay for reduced and oxidized glutathione. J Pharmacol Methods 12:191–194CrossRefGoogle Scholar
  28. 28.
    LeBlanc JG, del Carmen S, Miyoshi A et al (2011) Use of superoxide dismutase and catalase producing lactic acid bacteria in TNBS induced Crohn’s disease in mice. J Biotechnol 151:287–293CrossRefGoogle Scholar
  29. 29.
    Koçkar MC, Nazıroğlu M, Celik O et al (2010) N-acetylcysteine modulates doxorubicin-induced oxidative stress and antioxidant vitamin concentrations in liver of rats. Cell Biochem Funct 28:673–677CrossRefGoogle Scholar
  30. 30.
    Mogna L, Nicola S, Pane M et al (2012) Selenium and zinc internalized by Lactobacillus buchneri Lb26 (DSM 16341) and Bifidobacterium lactis Bb1 (DSM 17850): improved bioavailability using a new biological approach. J Clin Gastroenterol 46[Suppl]:S41–45CrossRefGoogle Scholar
  31. 31.
    Begley M, Hill C, Gahan CG (2006) Bile salt hydrolase activity in probiotics. Appl Environ Microbiol 72:1729–1738CrossRefGoogle Scholar
  32. 32.
    Liong MT, Shah NP (2005) Optimization of cholesterol removal, growth and fermentation patterns of Lactobacillus acidophilus ATCC 4962 in the presence of mannitol, fructooligosaccharide and inulin: a response surface methodology approach. J Appl Microbiol 98:1115–1126CrossRefGoogle Scholar
  33. 33.
    Liong MT, Shah NP (2005) Acid and bile tolerance and cholesterol removal ability of lactobacilli strains. J Dairy Sci 88:55–66CrossRefGoogle Scholar
  34. 34.
    Liong MT, Shah NP (2006) Effects of a Lactobacillus casei synbiotic on serum lipoprotein, intestinal microflora, and organic acids in rats. J Dairy Sci 89:1390–1399CrossRefGoogle Scholar
  35. 35.
    Hafkenscheid JC, Hectors MP (1975) An enzymic method for the determination of the glycine/taurine ratio of conjugated bile acids in bile. Clin Chim Acta 65:67–74CrossRefGoogle Scholar
  36. 36.
    Pompei A, Cordisco L, Amaretti A et al (2007) Folate production by Bifidobacteria as a potential probiotic property. Appl Environ Microbiol 73:179–185CrossRefGoogle Scholar
  37. 37.
    Pompei A, Cordisco L, Amaretti A et al (2007) Administration of folate-producing bifidobacteria enhances folate status in Wistar rats. J Nutr 137:2742–2746Google Scholar
  38. 38.
    Strozzi GP, Mogna L (2008) Quantification of folic acid in human faeces after administration of Bifidobacterium probiotic strains. J Clin Gastroenterol 42[Suppl 3]:179–184CrossRefGoogle Scholar
  39. 39.
    Rhee YK, Han MJ, Choi EC, Kim DH (2002) Hypocholesterolemic activity of Bifidobacteria isolated from a healthy Korean. Arch Pharm Res 25:681–684CrossRefGoogle Scholar
  40. 40.
    Kim TH, Yang J, Darling PB, O’Connor DL (2004) A large pool of available folate exists in the large intestine of human infants and piglets. J Nutr 134:1389–1394Google Scholar
  41. 41.
    Dudeja PK, Torania SA, Said HM (1997) Evidence for the existence of a carrier-mediated folate uptake mechanism in human colonic luminal membranes. Am J Physiol 272:G1408–G1415Google Scholar
  42. 42.
    Dudeja PK, Kode A, Alnounou M et al (2001) Mechanism of folate transport across the human colonic basolateral membrane. Am J Physiol Gastrointest Liver Physiol 281:G54–G60Google Scholar
  43. 43.
    Ramaekers VT, Blau N (2004) Cerebral folate deficiency. Dev Med Child Neurol 46:843–851CrossRefGoogle Scholar
  44. 44.
    Clarke R, Smith AD, Jobst KA et al (1998) Folate, vitamin B12, and serum total homocysteine levels in confirmed Alzheimer disease. Arch Neurol 55:1449–1455CrossRefGoogle Scholar
  45. 45.
    Seshadri S, Beiser A, Selhub J et al (2002) Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med 346:476–483CrossRefGoogle Scholar
  46. 46.
    Schreiber AJ, Simon FR (1983) Overview of clinical aspects of bile salt physiology. J Pediatr Gastroenterol Nutr 2:337–345CrossRefGoogle Scholar
  47. 47.
    Murphy GM, Signer E (1974) Bile acid metabolism in infants and children. Gut 15:151–163CrossRefGoogle Scholar
  48. 48.
    Watkins JB (1975) Mechanisms of fat absorption and the development of gastrointestinal function. Pediatr Clin North Am 22:721–730Google Scholar
  49. 49.
    Sjouke B, Kusters DM, Kastelein JJ, Hovingh GK (2011) Familial hypercholesterolemia: present and future management. Curr Cardiol Rep 13:527–536CrossRefGoogle Scholar
  50. 50.
    Shepardson NE, Shankar GM, Selkoe DJ (2011) Cholesterol level and statin use in Alzheimer disease: I. Review of epidemiological and preclinical studies. Arch Neurol 68:1239–1244CrossRefGoogle Scholar

Copyright information

© CEC editore - Springer-Verlag Italia 2012

Authors and Affiliations

  1. 1.Biolab Research SrlNovaraItaly
  2. 2.Probiotical SpANovaraItaly

Personalised recommendations