Skip to main content
Log in

DCGG: drug combination prediction using GNN and GAE

  • Regular Paper
  • Published:
Progress in Artificial Intelligence Aims and scope Submit manuscript

Abstract

Recent findings show that drug combination therapy can increase efficacy, decrease drug resistance, and reduce drug side effects. Due to the enormous number of possibilities in the selection of drugs, it is clinically impossible to screen all available combinations. Fortunately, artificial intelligence has opened up new perspectives for solving this problem by applying computationally intensive operations to predict drug combinations with high potential efficacy. These computational methods can be extremely resourceful for doctors and medical researchers to select drug combinations for the treatment of simple and complex diseases more cleverly and efficiently. In this paper, we propose an innovative solution for drug combination prediction called the DCGG method, in which the combination of node2vec, word2vec, indication, side effect, drug finger print, and drug targets is exploited for more enhanced prediction. DCGG is a combination of multiple Graph Auto Encoder (GAE) models that use Graph Neural Network (GNN) to prioritize potential novel, efficacious combination therapies. The comparison of DCGG with eight of the previous state-of-the-art models indicates the superiority of DCGG, which outperforms them by an average of 5% w.r.t AUC score (AUC = 0.974). Also, it is important to note that our method is used for a wide variety of drugs in contrast to many of the previous studies in this area. In addition to numeral evaluation, we constructed a graph of newly predicted drug combinations that are biologically interpreted with interesting patterns. We successfully found drug combinations that were not available in DCDB, but are mentioned and discussed to be efficacious in recent medical papers. Overall, the results indicate that DCGG provides a promising tool for predicting drug pairs that are most likely to have combinatorial efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bukowska, B., Gajek, A., Marczak, A.: Two drugs are better than one. a short history of combined therapy of ovarian cancer. Współczesna Onkologia 5, 350–353 (2015). https://doi.org/10.5114/wo.2014.43975

    Article  Google Scholar 

  2. Csermely, P., Korcsmáros, T., Kiss, H.J., London, G., Nussinov, R.: Structure and dynamics of molecular networks: a novel paradigm of drug discovery. Pharmacol. Ther. 138(3), 333–408 (2013). https://doi.org/10.1016/j.pharmthera.2013.01.016

    Article  Google Scholar 

  3. Sun, W., Sanderson, P.E., Zheng, W.: Drug combination therapy increases successful drug repositioning. Drug Discov. Today 21(7), 1189–1195 (2016). https://doi.org/10.1016/j.drudis.2016.05.015

    Article  Google Scholar 

  4. Plana, D., Palmer, A.C., Sorger, P.K.: Independent drug action in combination therapy: Implications for precision oncology. Cancer Discov. 12(3), 606–624 (2022). https://doi.org/10.1158/2159-8290.cd-21-0212

    Article  Google Scholar 

  5. Forrest, S.: Genetic algorithms: principles of natural selection applied to computation. Science 261(5123), 872–878 (1993)

    Article  Google Scholar 

  6. Zinner, R.G., Barrett, B.L., Popova, E., Damien, P., Volgin, A.Y., Gelovani, J.G., Lotan, R., Tran, H.T., Pisano, C., Mills, G.B., et al.: Algorithmic guided screening of drug combinations of arbitrary size for activity against cancer cells. Mol. Cancer Ther. 8(3), 521–532 (2009)

    Article  Google Scholar 

  7. Guney, E., Menche, J., Vidal, M., Barábasi, A.-L.: Network-based in silico drug efficacy screening. Nat. Commun. 7(1), 1–13 (2016)

    Article  Google Scholar 

  8. Yin, N., Ma, W., Pei, J., Ouyang, Q., Tang, C., Lai, L.: Synergistic and antagonistic drug combinations depend on network topology. PLoS ONE 9(4), e93960 (2014)

  9. Chen, H., Iyengar, S.K., Li, J.: Large-scale analysis of drug combinations by integrating multiple heterogeneous information networks. In: Proceedings of the 10th ACM International Conference on Bioinformatics. Computational Biology and Health Informatics, pp. 67–76 (2019)

  10. Sun, Y., Sheng, Z., Ma, C., Tang, K., Zhu, R., Wu, Z., Shen, R., Feng, J., Wu, D., Huang, D., et al.: Combining genomic and network characteristics for extended capability in predicting synergistic drugs for cancer. Nat. Commun. 6(1), 1–10 (2015)

    Article  Google Scholar 

  11. Shi, J.-Y., Li, J.-X., Mao, K.-T., Cao, J.-B., Lei, P., Lu, H.-M., Yiu, S.-M.: Predicting combinative drug pairs via multiple classifier system with positive samples only. Comput. Methods Programs Biomed. 168, 1–10 (2019)

    Article  Google Scholar 

  12. Shi, J.-Y., Li, J.-X., Gao, K., Lei, P., Yiu, S.-M.: Predicting combinative drug pairs towards realistic screening via integrating heterogeneous features. BMC Bioinform. (2017). https://doi.org/10.1186/s12859-017-1818-2

    Article  Google Scholar 

  13. Tsigelny, I.F.: Artificial intelligence in drug combination therapy. Brief. Bioinform. 20(4), 1434–1448 (2019)

    Article  Google Scholar 

  14. Preuer, K., Lewis, R.P., Hochreiter, S., Bender, A., Bulusu, K.C., Klambauer, G.: Deepsynergy: predicting anti-cancer drug synergy with deep learning. Bioinformatics 34(9), 1538–1546 (2018)

    Article  Google Scholar 

  15. Jiang, P., Huang, S., Fu, Z., Sun, Z., Lakowski, T.M., Hu, P.: Deep graph embedding for prioritizing synergistic anticancer drug combinations. Comput. Struct. Biotechnol. J. 18, 427–438 (2020)

    Article  Google Scholar 

  16. Sidorov, P., Naulaerts, S., Ariey-Bonnet, J., Pasquier, E., Ballester, P. J.: Predicting synergism of cancer drug combinations using nci-almanac data. Front. Chem. 509 (2019)

  17. Kipf, T. N., Welling, M.: Variational graph auto-encoders (2016). arXiv:1611.07308

  18. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE Trans. Neural Netw. 20(1), 61–80 (2009). https://doi.org/10.1109/tnn.2008.2005605

    Article  Google Scholar 

  19. Liu, Y., Wei, Q., Yu, G., Gai, W., Li, Y., Chen, X.: Dcdb 2.0: a major update of the drug combination database. Database 2014 (2014)

  20. Kuhn, M., Letunic, I., Jensen, L.J., Bork, P.: The sider database of drugs and side effects. Nucleic Acids Res. 44(D1), D1075–D1079 (2016)

    Article  Google Scholar 

  21. Pubmed, https://pubmed.ncbi.nlm.nih.gov/. Accessed 08 2022

  22. Al-Lazikani, B., Banerji, U., Workman, P.: Combinatorial drug therapy for cancer in the post-genomic era. Nat. Biotechnol. 30(7), 679–692 (2012)

    Article  Google Scholar 

  23. Chou, T.-C.: Drug combination studies and their synergy quantification using the Chou-Talalay method. Can. Res. 70(2), 440–446 (2010)

    Article  Google Scholar 

  24. Madani Tonekaboni, S.A., Soltan Ghoraie, L., Manem, V.S.K., Haibe-Kains, B.: Predictive approaches for drug combination discovery in cancer. Brief. Bioinform. 19(2), 263–276 (2018)

    Article  Google Scholar 

  25. Li, M., Wang, Y., Zheng, R., Shi, X., Li, Y., Wu, F.-X., Wang, J.: Deepdsc: a deep learning method to predict drug sensitivity of cancer cell lines. IEEE/ACM Trans. Comput. Biol. Bioinf. 18(2), 575–582 (2019)

    Article  Google Scholar 

  26. Baptista, D., Ferreira, P.G., Rocha, M.: Deep learning for drug response prediction in cancer. Brief. Bioinform. 22(1), 360–379 (2021)

    Article  Google Scholar 

  27. Li, P., Chen, F., Zheng, J., Yang, Y., Li, Y., Wang, Y., Chen, X.: Cyclophosphamide abrogates the expansion of cd4+foxp3+ regulatory t cells and enhances the efficacy of bleomycin in the treatment of mouse b16–f10 melanomas. Cancer Biol. Med. (2021). https://doi.org/10.20892/j.issn.2095-3941.2021.0027

    Article  Google Scholar 

  28. Cheng, F., Kovács, I.A., Barabási, A.-L.: Network-based prediction of drug combinations. Nat. Commun. 10(1), 1–11 (2019)

    Article  Google Scholar 

  29. Chen, D., Zhang, H., Lu, P., Liu, X., Cao, H.: Synergy evaluation by a pathway-pathway interaction network: a new way to predict drug combination. Mol. BioSyst. 12(2), 614–623 (2016)

    Article  Google Scholar 

  30. Chen, X., Ren, B., Chen, M., Wang, Q., Zhang, L., Yan, G.: Nllss: predicting synergistic drug combinations based on semi-supervised learning. PLoS Comput. Biol. 12(7), e1004975 (2016)

    Article  Google Scholar 

  31. Liu, H., Zhang, W., Nie, L., Ding, X., Luo, J., Zou, L.: Predicting effective drug combinations using gradient tree boosting based on features extracted from drug-protein heterogeneous network. BMC Bioinform. 20(1), 1–12 (2019)

    Article  Google Scholar 

  32. Yu, L., Xia, M., An, Q.: A network embedding framework based on integrating multiplex network for drug combination prediction. Briefings Bioinform. 23(1), bbab364 (2022)

    Article  Google Scholar 

  33. Xia, F., Shukla, M., Brettin, T., Garcia-Cardona, C., Cohn, J., Allen, J.E., Maslov, S., Holbeck, S.L., Doroshow, J.H., Evrard, Y.A., et al.: Predicting tumor cell line response to drug pairs with deep learning. BMC Bioinform. 19(18), 71–79 (2018)

    Google Scholar 

  34. Zhang, T., Zhang, L., Payne, P. R., Li, F.: Synergistic drug combination prediction by integrating multiomics data in deep learning models. In: Translational Bioinformatics for Therapeutic Development, Springer, pp. 223–238 (2021)

  35. Allahgholi, M., Rahmani, H., Javdani, D., Weiss, G., Módos, D.: Addi: Recommending alternatives for drug-drug interactions with negative health effects. Comput. Biol. Med. 125, 103969 (2020)

    Article  Google Scholar 

  36. Ziaee, S.S., Rahmani, H., Tabatabaei, M.: Dcomg: Drug combination prediction by applying gnns on ddi node2vec features. In: 2022 8th International Conference on Web Research (ICWR), 2022, pp. 9–15. https://doi.org/10.1109/ICWR54782.2022.9786240

  37. Weininger, D.: SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chem. Inf. Model. 28(1), 31–36 (1988). https://doi.org/10.1021/ci00057a005

    Article  Google Scholar 

  38. Landrum, G.: http://www.rdkit.org (2006)

  39. Bender, A., Cortés-Ciriano, I.: Artificial intelligence in drug discovery: what is realistic, what are illusions? part 1: Ways to make an impact, and why we are not there yet. Drug Discov. Today 26(2), 511–524 (2021). https://doi.org/10.1016/j.drudis.2020.12.009

    Article  Google Scholar 

  40. Bender, A., Cortes-Ciriano, I.: Artificial intelligence in drug discovery: what is realistic, what are illusions? Part 2: a discussion of chemical and biological data. Drug Discov. Today 26(4), 1040–1052 (2021). https://doi.org/10.1016/j.drudis.2020.11.037

    Article  Google Scholar 

  41. Yang, Z., Ding, M., Zhou, C., Yang, H., Zhou, J., Tang, J.: Understanding negative sampling in graph representation learning (2020). arXiv:2005.09863

  42. Kipf, T. N., Welling, M.: Semi-supervised classification with graph convolutional networks (2016). arXiv:1609.02907

  43. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks (2017). arXiv:1710.10903

  44. Hamilton, W. L., Ying, R., Leskovec, J.: Inductive representation learning on large graphs (2017). arXiv:1706.02216

  45. Kingma, D. P., Ba, J.: Adam: A method for stochastic optimization (2014). arXiv:1412.6980

  46. Xu, Q., Xiong, Y., Dai, H., Kumari, K.M., Xu, Q., Ou, H.-Y., Wei, D.-Q.: PDC-SGB: Prediction of effective drug combinations using a stochastic gradient boosting algorithm. J. Theor. Biol. 417, 1–7 (2017). https://doi.org/10.1016/j.jtbi.2017.01.019

    Article  Google Scholar 

  47. Calza, L., Cafaggi, M., Colangeli, V., Borderi, M., Barchi, E., Lanzafame, M., Nicole’, S., Antoni, A.M.D., Bon, I., Re, M.C., Viale, P.: Simplification to dual-therapy containing lamivudine and darunavir/ritonavir or atazanavir/ritonavir in HIV-infected patients on virologically suppressive antiretroviral therapy. Infect. Dis. 50(5), 352–360 (2017). https://doi.org/10.1080/23744235.2017.1410285

    Article  Google Scholar 

  48. Nielsen, C.U., Pedersen, M., Müller, S., Kæstel, T., Bjerg, M., Ulaganathan, N., Nielsen, S., Carlsen, K.L., Nøhr, M.K., Holm, R.: Inhibitory effects of 17-ethinyl-estradiol and 17-estradiol on transport via the intestinal proton-coupled amino acid transporter (pat1) investigated in vitro and in vivo. J. Pharm. Sci. 110(1), 354–364 (2021). https://doi.org/10.1016/j.xphs.2020.08.010

    Article  Google Scholar 

  49. Uchiyama, K., Kitayama, C., Yanai, A., Ishibashi, Y.: The effect of trichlormethiazide in autosomal dominant polycystic kidney disease patients receiving tolvaptan: a randomized crossover controlled trial. Sci. Rep. (2021). https://doi.org/10.1038/s41598-021-97113-w

    Article  Google Scholar 

  50. Srivastava, S., van Zyl, J., Cirrincione, K., Martin, K., Thomas, T., Deshpande, D., Alffenaar, J.-W., Seddon, J.A., Gumbo, T.: Evaluation of ceftriaxone plus avibactam in an intracellular hollow fiber model of tuberculosis: Implications for the treatment of disseminated and meningeal tuberculosis in children. Pediat. Infect. Disease J. 39(12), 1092–1100 (2020). https://doi.org/10.1097/inf.0000000000002857

    Article  Google Scholar 

  51. Matthews, D.R., Paldánius, P.M., Proot, P., Chiang, Y., Stumvoll, M., Prato, S.D.: Glycaemic durability of an early combination therapy with vildagliptin and metformin versus sequential metformin monotherapy in newly diagnosed type 2 diabetes (VERIFY): a 5-year, multicentre, randomised, double-blind trial. Lancet 394(10208), 1519–1529 (2019). https://doi.org/10.1016/s0140-6736(19)32131-2

    Article  Google Scholar 

  52. Takeshima, M.: Early recognition and appropriate pharmacotherapy for mixed depression: the key to resolving complex or treatment-refractory clinical cases. Clin. Neuropsychopharmacol. Therapeut. 10, 10–17 (2019). https://doi.org/10.5234/cnpt.10.10

    Article  Google Scholar 

  53. Martin, P., Bartlett, N.L., Chavez, J.C., Reagan, J.L., Smith, S.M., LaCasce, A.S., Jones, J., Drew, J., Wu, C., Mulvey, E., Revuelta, M.V., Cerchietti, L., Leonard, J.P.: Phase 1 study of oral azacitidine (CC-486) plus r-CHOP in previously untreated intermediate- to high-risk DLBCL. Blood 139(8), 1147–1159 (2022). https://doi.org/10.1182/blood.2021011679

    Article  Google Scholar 

  54. Sagara, I., Beavogui, A.H., Zongo, I., Soulama, I., Borghini-Fuhrer, I., Fofana, B., Traore, A., Diallo, N., Diakite, H., Togo, A.H., Koumare, S., Keita, M., Camara, D., Somé, A.F., Coulibaly, A.S., Traore, O.B., Dama, S., Goita, S., Djimde, M., Bamadio, A., Dara, N., Maiga, H., Sidibe, B., Dao, F., Coulibaly, M., Alhousseini, M.L., Niangaly, H., Sangare, B., Diarra, M., Coumare, S., Kabore, M.J.T., Ouattara, S.M., Barry, A., Kargougou, D., Diarra, A., Henry, N., Soré, H., Bougouma, E.C., Thera, I., Compaore, Y.D., Sutherland, C.J., Sylla, M.M., Nikiema, F., Diallo, M.S., Dicko, A., Picot, S., Borrmann, S., Duparc, S., Miller, R.M., Doumbo, O.K., Shin, J., Gil, J.P., Björkman, A., Ouedraogo, J.-B., Sirima, S.B., Djimde, A.A.: Pyronaridine–artesunate or dihydroartemisinin–piperaquine versus current first-line therapies for repeated treatment of uncomplicated malaria: a randomised, multicentre, open-label, longitudinal, controlled, phase 3b/4 trial. Lancet 391(10128), 1378–1390 (2018). https://doi.org/10.1016/s0140-6736(18)30291-5

  55. Halder, U.C.: Predicted antiviral drugs darunavir, amprenavir, rimantadine and saquinavir can potentially bind to neutralize SARS-CoV-2 conserved proteins. J Biol Res-Thessalon. (2021). https://doi.org/10.1186/s40709-021-00149-2

  56. Wikipedia, Hydrocortisone—Wikipedia, the free encyclopedia, http://en.wikipedia.org/w/index.php?title=Hydrocortisone &oldid=1083983031 (2022). Accessed 20 July 2022

  57. Wikipedia, Cisplatin—Wikipedia, the free encyclopedia, http://en.wikipedia.org/w/index.php?title=Cisplatin &oldid=1088522170 (2022). Accessed 20 July 2022

  58. Wikipedia, Prednisone—Wikipedia, the free encyclopedia, http://en.wikipedia.org/w/index.php?title=Prednisone &oldid=1093748295 (2022). Accessed 20 July 2022

  59. Lixisenatide, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5642155/. Accessed 22 Aug 2022

  60. Gliclazide, https://www.nhs.uk/medicines/gliclazide/. Accessed 22 Aug 2022

  61. Repaglinide, https://www.ncbi.nlm.nih.gov/books/NBK559305/. Accessed 22 Aug 2022

  62. Zonisamide, https://www.ncbi.nlm.nih.gov/books/NBK507903/. Accessed 22 Aug 2022

  63. Tian, J., Wu, Q., He, Y., Shen, Q., Rekep, M., Zhang, G., Luo, J., Xue, Q., Liu, Y.: Zonisamide, an antiepileptic drug, alleviates diabetic cardiomyopathy by inhibiting endoplasmic reticulum stress. Acta Pharmacol. Sin. 42(3), 393–403 (2020). https://doi.org/10.1038/s41401-020-0461-z

    Article  Google Scholar 

  64. Ziaee, S.: https://github.com/sinaziaee/DCGG (2022)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Rahmani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ziaee, S.S., Rahmani, H., Tabatabaei, M. et al. DCGG: drug combination prediction using GNN and GAE. Prog Artif Intell 13, 17–30 (2024). https://doi.org/10.1007/s13748-024-00314-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13748-024-00314-3

Keywords

Navigation